Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Learn Mem ; 30(5-6): 101-109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37419679

RESUMO

Training on one task (task A) can disrupt learning on a subsequently trained task (task B), illustrating anterograde learning interference. We asked whether the induction of anterograde learning interference depends on the learning stage that task A has reached when the training on task B begins. To do so, we drew on previous observations in perceptual learning in which completing all training on one task before beginning training on another task (blocked training) yielded markedly different learning outcomes than alternating training between the same two tasks for the same total number of trials (interleaved training). Those blocked versus interleaved contrasts suggest that there is a transition between two differentially vulnerable learning stages that is related to the number of consecutive training trials on each task, with interleaved training presumably tapping acquisition, and blocked training tapping consolidation. Here, we used the blocked versus interleaved paradigm in auditory perceptual learning in a case in which blocked training generated anterograde-but not its converse, retrograde-learning interference (A→B, not B←A). We report that anterograde learning interference of training on task A (interaural time difference discrimination) on learning on task B (interaural level difference discrimination) occurred with blocked training and diminished with interleaved training, with faster rates of interleaving leading to less interference. This pattern held for across-day, within-session, and offline learning. Thus, anterograde learning interference only occurred when the number of consecutive training trials on task A surpassed some critical value, consistent with other recent evidence that anterograde learning interference only arises when learning on task A has entered the consolidation stage.


Assuntos
Aprendizagem , Memória , Escolaridade
2.
Atten Percept Psychophys ; 81(2): 533-542, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30488189

RESUMO

Rhythm is fundamental to music and speech, yet little is known about how even simple rhythmic patterns are processed. Here we investigated the processing of isochronous rhythms in the short inter-onset-interval (IOI) range (IOIs < 250-400 ms) using a perceptual-learning paradigm. Trained listeners (n=8) practiced anisochrony detection with a 100-ms IOI marked by 1-kHz tones, 720 trials per day for 7 days. Between pre- and post-training tests, trained listeners improved significantly more than controls (no training; n=8) on the anisochrony-detection condition that the trained listeners practiced. However, the learning on anisochrony detection did not generalize to temporal-interval discrimination with the trained IOI (100 ms) and marker frequency (1 kHz) or to anisochrony detection with an untrained marker frequency (4 kHz or variable frequency vs. 1 kHz), and generalized negatively to anisochrony detection with an untrained IOI (200 ms vs. 100 ms). Further, pre-training thresholds were correlated among nearly all of the conditions with the same IOI (100-ms IOIs), but not between conditions with different IOIs (100-ms vs. 200-ms IOIs). Thus, it appears that some task-, IOI-, and frequency-specific processes are involved in fast-rhythm processing. These outcomes are most consistent with a holistic rhythm-processing model in which a holistic "image" of the stimulus is compared to a stimulus-specific template.


Assuntos
Percepção Auditiva/fisiologia , Aprendizagem/fisiologia , Música , Percepção do Tempo/fisiologia , Estimulação Acústica/métodos , Adulto , Análise de Variância , Feminino , Humanos , Masculino , Psicoacústica , Limiar Sensorial , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA