Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gene Ther ; 30(1-2): 75-87, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132206

RESUMO

Traumatic brain injury (TBI) survivors suffer from long-term disability and neuropsychiatric sequelae due to irreparable brain tissue destruction. However, there are still few efficient therapies to promote neurorestoration in damaged brain tissue. This study aimed to investigate whether the pro-oncogenic gene ski can promote neurorestoration after TBI. We established a ski-overexpressing experimental TBI mouse model using adenovirus-mediated overexpression through immediate injection after injury. Hematoxylin-eosin staining, MRI-based 3D lesion volume reconstruction, neurobehavioral tests, and analyses of neuronal regeneration and astrogliosis were used to assess neurorestorative efficiency. The effects of ski overexpression on the proliferation of cultured immature neurons and astrocytes were evaluated using imaging flow cytometry. The Ski protein level increased in the perilesional region at 3 days post injury. ski overexpression further elevated Ski protein levels up to 14 days post injury. Lesion volume was attenuated by approximately 36-55% after ski overexpression, with better neurobehavioral recovery, more newborn immature and mature neurons, and less astrogliosis in the perilesional region. Imaging flow cytometry results showed that ski overexpression elevated the proliferation rate of immature neurons and reduced the proliferation rate of astrocytes. These results show that ski can be considered a novel neurorestoration-related gene that effectively promotes neurorestoration, facilitates neuronal regeneration, and reduces astrogliosis after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Gliose , Camundongos , Animais , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Neurônios/metabolismo , Lesões Encefálicas Traumáticas/terapia , Encéfalo/metabolismo , Regeneração
2.
Sheng Li Xue Bao ; 74(4): 505-512, 2022 Aug 25.
Artigo em Zh | MEDLINE | ID: mdl-35993201

RESUMO

The purpose of the present study was to investigate the effect of glutamate scavenger oxaloacetate (OA) combined with CGS21680, an adenosine A2A receptor (A2AR) agonist, on acute traumatic brain injury (TBI), and to elucidate the underlying mechanisms. C57BL/6J mice were subjected to moderate-level TBI by controlled cortical impact, and then were treated with OA, CGS21680, or OA combined with CGS21680 at acute stage of TBI. At 24 h post TBI, neurological severity score, brain water content, glutamate concentration in cerebrospinal fluid (CSF), mRNA and protein levels of IL-1ß and TNF-α, mRNA level and activity of glutamate oxaloacetate aminotransferase (GOT), and ATP level of brain tissue were detected. The results showed that neurological deficit, brain water content, glutamate concentration in CSF, and the inflammatory cytokine IL-1ß and TNF-α production were exacerbated in CGS21680 treated mice. Administrating OA suppressed the rise of both glutamate concentration in CSF and brain water content, and elevated the ATP level of cerebral tissue. More interestingly, neurological deficit, brain edema, glutamate concentration, IL-1ß and TNF-α levels were ameliorated significantly in mice treated with OA combined with CGS21680. The combined treatment exhibited better therapeutic effects than single OA treatment. We also observed that GOT activity was enhanced in single CGS21680 treatment group, and both the GOT mRNA level and GOT activity were up-regulated in early-stage combined treatment group. These results suggest that A2AR can improve the efficiency of GOT and potentiate the ability of OA to metabolize glutamate. This may be the mechanism that A2AR activation in combination group augmented the neuroprotective effect of OA rather than aggravated the brain damages. Taken together, the present study provides a new insight for the clinical treatment of TBI with A2AR agonists and OA.


Assuntos
Agonistas do Receptor A2 de Adenosina , Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Ácido Oxaloacético , Receptor A2A de Adenosina , Agonistas do Receptor A2 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/uso terapêutico , Trifosfato de Adenosina , Animais , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Ácido Glutâmico , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ácido Oxaloacético/farmacologia , Ácido Oxaloacético/uso terapêutico , RNA Mensageiro , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Fator de Necrose Tumoral alfa/genética , Água
3.
J Neuroinflammation ; 18(1): 241, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666797

RESUMO

BACKGROUND: Cognitive impairment in the late stage of traumatic brain injury (TBI) is associated with the NOD-, LRR and pyrin domain-containing protein 3 (NLRP3) inflammasome, which plays an important role in neuroinflammation. Although classical inflammatory pathways have been well-documented in the late stage of TBI (4-8 weeks post-injury), the mechanism by which the NLRP3 inflammasome impairs cognition is still unclear. METHODS: Mice lacking the gene encoding for NLRP3 (NLRP3-knockout mice) and their wild-type littermates were used in a controlled cortical impact model of TBI. Levels of NLRP3 inflammasome and inflammatory factors such as IL-1ß and HMGB1 were detected in post-injury hippocampal tissue, as well as long-term potentiation. Behaviors were assessed by T-maze test, novel object recognition, and nesting tests. Glycyrrhizin was used to antagonize HMGB1. Calcium imaging were performed on primary neuronal cultures. RESULTS: By using the NLRP3-knockout TBI model, we found that the continuous activation of the NLRP3 inflammasome and high mobility group box 1 (HMGB1) release were closely related to cognitive impairment. We also found that inhibition of HMGB1 improved LTP reduction and cognitive function by increasing the phosphorylation level of the NMDAR1 subunit at serine 896 while reducing NLRP3 inflammasome activation. CONCLUSION: NLRP3 inflammasome damages memory in the late stage of TBI primarily through HMGB1 upregulation and provides an explanation for the long-term progression of cognitive dysfunction.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Disfunção Cognitiva/metabolismo , Proteína HMGB1/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Técnicas de Cocultura , Disfunção Cognitiva/patologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos
4.
J Cell Mol Med ; 24(12): 7000-7014, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32394486

RESUMO

Spatial recognition memory impairment is an important complication after traumatic brain injury (TBI). We previously found that spatial recognition memory impairment can be alleviated in adenosine A2A receptor knockout (A2A R KO) mice after TBI, but the mechanism remains unclear. In the current study, we used manganese-enhanced magnetic resonance imaging and the Y-maze test to determine whether the electrical activity of neurons in the retrosplenial cortex (RSC) was reduced and spatial recognition memory was impaired in wild-type (WT) mice after moderate TBI. Furthermore, spatial recognition memory was damaged by optogenetically inhibiting the electrical activity of RSC neurons in WT mice. Additionally, the electrical activity of RSC neurons was significantly increased and spatial recognition memory impairment was reduced in A2A R KO mice after moderate TBI. Specific inhibition of A2A R in the ipsilateral RSC alleviated the impairment in spatial recognition memory in WT mice. In addition, A2A R KO improved autophagic flux in the ipsilateral RSC after injury. In primary cultured neurons, activation of A2A R reduced lysosomal-associated membrane protein 1 and cathepsin D (CTSD) levels, increased phosphorylated protein kinase A and phosphorylated extracellular signal-regulated kinase 2 levels, reduced transcription factor EB (TFEB) nuclear localization and impaired autophagic flux. These results suggest that the impairment of spatial recognition memory after TBI may be associated with impaired autophagic flux in the RSC and that A2A R activation may reduce lysosomal biogenesis through the PKA/ERK2/TFEB pathway to impair autophagic flux.


Assuntos
Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Autofagia , Lesões Encefálicas Traumáticas/complicações , Giro do Cíngulo/patologia , Giro do Cíngulo/fisiopatologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Memória Espacial/efeitos dos fármacos , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Giro do Cíngulo/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/patologia , Biogênese de Organelas
5.
Neurochem Res ; 44(12): 2755-2764, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31650360

RESUMO

Pathogens such as bacterial lipopolysaccharide (LPS) play an important role in promoting the production of the inflammatory cytokines interleukin-1 beta (IL-1ß) and tumour necrosis factor-α (TNF-α) in response to infection or damage in microglia. However, whether different signalling pathways regulate these two inflammatory factors remains unclear. The protein kinase C (PKC) family is involved in the regulation of inflammation, and our previous research showed that the activation of the PKC pathway played a key role in the LPS-induced transformation of the adenosine A2A receptor (A2AR) from anti-inflammatory activity to pro-inflammatory activity under high glutamate concentrations. Therefore, in the current study, we investigated the role of PKC in the LPS-induced production of these inflammatory cytokines in mouse primary microglia. GF109203X, a specific PKC inhibitor, inhibited the LPS-induced expression of IL-1ß messenger ribonucleic acid and intracellular protein in a dose-dependent manner. Moreover, 5 µM GF109203X prevented LPS-induced IL-1ß expression but did not significantly affect LPS-induced TNF-α expression. PKC promoted IL-1ß expression by regulating the activity of NF-κB but did not significantly impact the activity of ERK1/2. A2AR activation by CGS21680, an A2AR agonist, facilitated LPS-induced IL-1ß expression through the PKC pathway at high glutamate concentrations but did not significantly affect LPS-induced TNF-α expression. Taken together, these results suggest a new direction for specific intervention with LPS-induced inflammatory factors in response to specific signalling pathways and provide a mechanism for A2AR targeting, especially after brain injury, to influence inflammation by interfering with A2AR.


Assuntos
Ácido Glutâmico/metabolismo , Interleucina-1beta/metabolismo , Microglia/metabolismo , Proteína Quinase C/metabolismo , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Indóis/farmacologia , Inflamação/induzido quimicamente , Lipopolissacarídeos , Maleimidas/farmacologia , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fenetilaminas/farmacologia , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição RelA/metabolismo
6.
Biochem Biophys Res Commun ; 498(4): 795-802, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29526759

RESUMO

Excitatory amino acid transporters (EAATs) on cerebral vascular endothelial cells play an important role in maintaining glutamate homeostasis in the brain. The dysfunction of endothelial EAATs is an important reason for the dramatically elevated brain glutamate levels after brain injury, such as traumatic brain injury (TBI). The adenosine A2A receptor (A2AR) plays an important role in regulating the brain glutamate level after brain injury; however, researchers have not clearly determined whether this role was related to its ability to regulate endothelial EAATs. Activation of A2AR in vitro not only decreased the PKA- and glutamate level-dependent strengthening of the interaction between NKA-α1 and the FXYD1 subunit and the subsequent decrease in the activity of Na+/K+-ATPases (NKAs) but also enhanced its interaction with EAATs and ultimately aggravated the reverse transport function of endothelial EAATs under oxygen-glucose deprivation (OGD) conditions. Conversely, inhibition of A2AR restored the normal transport of EAAT. Moreover, A2AR inhibition increased NKA activity and decreased its interaction with EAATs in isolated brain capillaries after TBI, further confirming its role in endothelial EAATs in vivo. Based on our results, A2AR played an important role in regulating endothelial EAAT function, and strategies that restore the normal transport of endothelial EAATs through the inhibition of A2AR might serve as an effective treatment for brain injury.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico/metabolismo , Receptor A2A de Adenosina/metabolismo , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor A2A de Adenosina/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
7.
Mol Cell Biochem ; 440(1-2): 189-197, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28828564

RESUMO

Glucocorticoids are commonly used for the treatment of pancreatitis and complicated acute lung injury and help to reduce the mortality rates of both. The effect of gene variants in heat shock protein 90 (Hsp90), a key chaperone molecule of the glucocorticoid receptor (GR), on the therapeutic effect of glucocorticoids is unclear. Our study aims to investigate the different susceptibility to glucocorticoid treatment in BALB/c and C57BL/6 mice carrying different Hsp90 genotypes in an animal model of pancreatitis-induced lung injury. Compared with BALB/c mice, C57BL/6 mice have lower mortality rates, decreased water content in their lungs, and a lower level of IL-1 beta in an animal model of acute pancreatitis. C57BL/6 mice show a greater therapeutic effect and increased GR binding activities with glucocorticoid responsive element compared to BALB/c mice after a 0.4 mg/kg dexamethasone (DEX) treatment. Treatment with a higher dose of DEX (4 mg/kg) significantly reduced mortality rates and increased GR-GRE binding activity in both strains of mice, and there was no significant difference between the two strains. DEX did not exert a protective role after geldanamycin, a specific inhibitor of Hsp90, was administered in both strains of mice. Our study revealed that Hsp90 gene variants are responsible for the greater therapeutic effect of DEX in C57BL/6 mice compared to BALB/c mice, which implies that combining DEX treatment with Hsp90 regulation would promote the efficiency of DEX and would be an effective way to alleviate the side effects of hormone therapy.


Assuntos
Dexametasona/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Lesão Pulmonar , Pulmão/metabolismo , Pancreatite , Receptores de Glucocorticoides/metabolismo , Animais , Interleucina-1beta/metabolismo , Pulmão/patologia , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pancreatite/complicações , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Pancreatite/patologia
8.
Growth Factors ; 34(3-4): 119-27, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27418111

RESUMO

We previously demonstrated that cellular Sloan-Kettering Institute (c-Ski) played a dual role, both promoting wound healing and alleviating scar formation. However, its mechanism and therapeutic effects are not clear, especially compared with widely used treatments, such as basic fibroblast growth factor (bFGF) administration. However, Ski treatment led to an even shorter healing time and a more significant reduction in scar area than bFGF treatment. The mechanism underlying this difference was related to a reduced inflammatory response, more rapid re-epithelialization, less collagen after healing and a greater reduction in the proportion of alpha-smooth muscle actin and SMemb-positive cells after Ski treatment. These results not only confirm that Ski plays a dual role in promoting healing and reducing scarring but also suggest that Ski yields better treatment effects than bFGF, indicating better potential therapeutic effects in wound repair.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , Terapia Genética/métodos , Proteínas Proto-Oncogênicas/genética , Cicatrização/genética , Actinas/genética , Actinas/metabolismo , Animais , Colágeno/genética , Colágeno/metabolismo , Feminino , Terapia Genética/efeitos adversos , Masculino , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes , Cicatrização/efeitos dos fármacos
9.
Cell Physiol Biochem ; 38(4): 1354-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27007335

RESUMO

BACKGROUND/AIMS: Although it has been reported that somatostatin (SOM) upregulated the level of 90-kD heat shock protein (Hsp90), which participates in the inflammatory regulation by its client proteins, such as glucocorticoid receptor (GR), it remains unclear if it has a protective role against acute lung injury (ALI). METHODS: ALI model was established by the injection of oleic acid (OA) into the tail vein of mice. Lung injury was assessed by histological analysis, lung water content and arterial blood gases. The levels of Hsp90 and GR, the binding capacity and the affinity of GR were examined. RESULTS: It was showed that pretreatment with SOM significantly increased Hsp90 levels and alleviated lung injuries in OA-injected mice. Furthermore, SOM increased the GR expression and improved the affinity of the GR in animals with lung injury. However, little alteration was found in the maximum binding capacity of the GR in mice with or without SOM. CONCLUSION: The data indicate SOM exerts a protective effect by increasing Hsp90 abundant and further enhancing the affinity of the GR. The beneficial effects of SOM treatment provide a new strategy for modulation of GR efficiency and alleviation of acute lung injury.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Receptores de Glucocorticoides/metabolismo , Somatostatina/uso terapêutico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Gasometria , Western Blotting , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Hormônios/farmacologia , Hormônios/uso terapêutico , Ligantes , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Ligação Proteica , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Somatostatina/farmacologia , Regulação para Cima/efeitos dos fármacos
10.
Chin J Traumatol ; 18(4): 187-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26764538

RESUMO

Explosive blast injury has become the most prevalent injury in recent military conflicts and terrorist attacks. The magnitude of this kind of polytrauma is complex due to the basic physics of blast and the surrounding environments. Therefore, development of stable, reproducible and controllable animal model using an ideal blast simulation device is the key of blast injury research. The present review addresses the modeling of blast injury and applications of shock tubes.


Assuntos
Traumatismos por Explosões/etiologia , Modelos Animais de Doenças , Animais , Ondas de Choque de Alta Energia , Pesquisa
11.
Chin J Traumatol ; 18(4): 204-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26764541

RESUMO

OBJECTIVE: To investigate the effects of three different ways of chronic caffeine administration on blast- induced memory dysfunction and to explore the underlying mechanisms. METHODS: Adult male C57BL/6 mice were used and randomly divided into five groups: control: without blast exposure, con-water: administrated with water continuously before and after blast-induced traumatic brain injury (bTBI), con-caffeine: administrated with caffeine continuously for 1 month before and after bTBI, pre-caffeine: chronically administrated with caffeine for 1 month before bTBI and withdrawal after bTBI, post-caffeine: chronically administrated with caffeine after bTBI. After being subjected to moderate intensity of blast injury, mice were recorded for learning and memory performance using Morris water maze (MWM) paradigms at 1, 4, and 8 weeks post-blast injury. Neurological deficit scoring, glutamate concentration, proinflammatory cytokines production, and neuropathological changes at 24 h, 1, 4, and 8 weeks post-bTBI were examined to evaluate the brain injury in early and prolonged stages. Adenosine A1 receptor expression was detected using qPCR. RESULTS: All of the three ways of chronic caffeine exposure ameliorated blast-induced memory deficit, which is correlated with the neuroprotective effects against excitotoxicity, inflammation, astrogliosis and neuronal loss at different stages of injury. Continuous caffeine treatment played positive roles in both early and prolonged stages of bTBI; pre-bTBI and post-bTBI treatment of caffeine tended to exert neuroprotective effects at early and prolonged stages of bTBI respectively. Up-regulation of adenosine A1 receptor expression might contribute to the favorable effects of chronic caffeine consumption. CONCLUSION: Since caffeinated beverages are widely consumed in both civilian and military personnel and are convenient to get, the results may provide a promising prophylactic strategy for blast-induced neurotrauma and the consequent cognitive impairment.


Assuntos
Traumatismos por Explosões/complicações , Lesões Encefálicas Traumáticas/complicações , Cafeína/farmacologia , Transtornos da Memória/prevenção & controle , Animais , Córtex Cerebral/patologia , Hipocampo/patologia , Masculino , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/análise , Receptor A1 de Adenosina/genética
12.
CNS Neurosci Ther ; 30(1): e14408, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37564004

RESUMO

AIMS: Adenosine 2A receptor (A2A R) is widely expressed in the brain and plays important roles in neuroinflammation, and the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a crucial component of the innate immune system while the regulation of A2A R on it in the central nervous system (CNS) has not been clarified. METHODS: The effects of microglial A2A R on NLRP3 inflammasome assembly and activation were investigated in wild-type, A2A R- or NLRP3-knockout primary microglia with pharmacological treatment. Microglial A2A R or NLRP3 conditional knockout mice were used to interrogate the effects of this regulation on neuroinflammation posttraumatic brain injury (TBI). RESULTS: We found that A2A R directly interacted with NLRP3 and facilitated NLRP3 inflammasome assembly and activation in primary microglia while having no effects on mRNA levels of inflammasome components. Inhibition of the interaction via A2A R agonist or knockout attenuated inflammasome assembly and activation in vitro. In the TBI model, microglial A2A R and NLRP3 were co-expressed at high levels in microglia next to the peri-injured cortex, and abrogating of this interaction by microglial NLRP3 or A2A R conditional knockout attenuated the neurological deficits and neuropathology post-TBI via reducing the NLRP3 inflammasome activation. CONCLUSION: Our results demonstrated that inhibition of the interaction between A2A R and NLRP3 in microglia could mitigate the NLRP3 inflammasome assembly and activation and ameliorate the neuroinflammation post-TBI. It provides new insights into the effects of A2A R on neuroinflammation regulation post-TBI and offers a potential target for the treatment of NLRP3 inflammasome-related CNS diseases.


Assuntos
Lesões Encefálicas Traumáticas , Inflamassomos , Animais , Camundongos , Adenosina/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Inflamassomos/metabolismo , Camundongos Knockout , Microglia , Doenças Neuroinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
13.
Adv Sci (Weinh) ; : e2307185, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958448

RESUMO

Motor learning (ML), which plays a fundamental role in growth and physical rehabilitation, involves different stages of learning and memory processes through different brain regions. However, the neural mechanisms that underlie ML are not sufficiently understood. Here, a previously unreported neuronal projection from the dorsal hippocampus (dHPC) to the zona incerta (ZI) involved in the regulation of ML behaviors is identified. Using recombinant adeno-associated virus, the projections to the ZI are surprisingly identified as originating from the dorsal dentate gyrus (DG) and CA1 subregions of the dHPC. Furthermore, projection-specific chemogenetic and optogenetic manipulation reveals that the projections from the dorsal CA1 to the ZI play key roles in the acquisition and consolidation of ML behaviors, whereas the projections from the dorsal DG to the ZI mediate the retrieval/retention of ML behaviors. The results reveal new projections from the dorsal DG and dorsal CA1 to the ZI involved in the regulation of ML and provide insight into the stages over which this regulation occurs.

14.
Int Rev Neurobiol ; 170: 225-265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37741693

RESUMO

Accumulating evidence has revealed the adenosine 2A receptor is a key tuner for neuropathological and neurobehavioral changes following traumatic brain injury by experimental animal models and a few clinical trials. Here, we highlight recent data involving acute/sub-acute and chronic alterations of adenosine and adenosine 2A receptor-associated signaling in pathological conditions after trauma, with an emphasis of traumatic brain injury, including neuroinflammation, cognitive and psychiatric disorders, and other severe consequences. We expect this would lead to the development of therapeutic strategies for trauma-related disorders with novel mechanisms of action.


Assuntos
Lesões Encefálicas Traumáticas , Transtornos Mentais , Animais , Humanos , Adenosina , Modelos Animais
15.
Exp Neurol ; 364: 114378, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36907351

RESUMO

The formation of fear memory is crucial in emotional disorders such as PTSD and anxiety. Traumatic brain injury (TBI) can cause emotional disorders with dysregulated fear memory formation; however, their cross-interaction remains unclear and hurdled the treatment against TBI-related emotional disorders. While adenosine A2A receptor(A2AR) contributes to the physiological regulation of fear memory, this study aimed to evaluate the A2AR role and possible mechanisms in post-TBI fear memory formation using a craniocerebral trauma model, genetically modified A2AR mutant mice, and pharmacological A2AR agonist CGS21680 and antagonist ZM241385. Our finding showed (i) TBI enhanced mice freezing levels (fear memory) at seven days post-TBI; (ii) The A2AR agonist CGS21680 enhanced the post-TBI freezing levels; conversely, the A2AR antagonist ZM241385 reduced mice freezing level; further (iii) Genetic knockdown of neuronal A2AR in the hippocampal CA1, CA3, and DG regions reduced post-TBI freezing levels, while A2AR knockout in DG region yielded the most reduction in fear memory; finally, (iv) AAV-CaMKII-Cre virus-mediated DG deletion of A2AR on excitatory neurons led to a significant decreased freezing levels post-TBI. These findings indicate that brain trauma increases fear memory retrieval post-TBI, and A2AR on DG excitatory neurons plays a crucial role in this process. Importantly, inhibition of A2AR attenuates fear memory enhancement, which provides a new strategy to prevent fear memory formation/enhancement after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Receptor A2A de Adenosina , Camundongos , Animais , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Hipocampo/metabolismo , Medo , Neurônios/metabolismo , Camundongos Endogâmicos C57BL
16.
J Pathol ; 223(5): 659-71, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21341267

RESUMO

We recently demonstrated that Ski is a novel wound healing-related factor that promotes fibroblast proliferation and inhibits collagen secretion. Here, we show that increasing local Ski expression by gene transfer not only significantly accelerated wound healing by relieving inflammation, accelerating re-epithelialization and increasing formation of granulation tissue, but also reduced scar formation by decreasing collagen production in rat dermal wounds. Similarly, ski gene transfer accelerated wound healing, reduced the protuberant height and volume of scars and increased collagen maturity in a hypertrophic scar model in the rabbit ear. Conversely, reducing Ski expression in the wound by RNA interference resulted in significantly slower wound healing and increased scar area in rat dermal wounds. We demonstrated that these effects of Ski are associated with transforming growth factor-ß-mediated signalling pathways through both Smad2/3-dependent and Smad-independent pathways. Together, our results define a dual role for Ski in promoting wound healing and alleviating scar formation, identifying a new target for therapeutic approaches to preventing scar hyperplasia and accelerating wound healing.


Assuntos
Cicatriz/fisiopatologia , Proteínas Proto-Oncogênicas/fisiologia , Cicatrização/fisiologia , Animais , Cicatriz/patologia , Cicatriz/terapia , Cicatriz Hipertrófica/patologia , Cicatriz Hipertrófica/fisiopatologia , Cicatriz Hipertrófica/terapia , Colágeno/metabolismo , Orelha Externa/lesões , Feminino , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética/métodos , Mediadores da Inflamação/metabolismo , Masculino , Interferência de RNA , Coelhos , Ratos , Ratos Wistar , Pele/lesões
17.
Behav Brain Res ; 433: 113997, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35803544

RESUMO

Effective treatment for cognitive dysfunction after traumatic brain injury (TBI) is lacking in clinical practice. Increased brain-derived neurotrophic factor (BDNF) expression in cognitive circuits can significantly alleviate cognitive dysfunction in animal models of TBI. Selective 5-hydroxytryptamine receptor 6 (5-HT6R) agonists significantly increase BDNF expression and improve cognitive function. Therefore, we evaluated the protective effect of a highly selective 5-HT6R agonist, WAY-181187, on cognitive dysfunction after TBI. We established a controlled cortical impact model of moderate TBI in rats and performed drug intervention for five consecutive days. Rats had spatial reference memory impairment in the Morris water maze one and four weeks after TBI. BDNF expression in the medial prefrontal cortex (mPFC) and hippocampus decreased two and five weeks after TBI. Additionally, five weeks after TBI, decreases in neuronal dendritic spine density and the proportion of thin, mushroom-shaped dendritic spines and an increased proportion of stubby-type dendritic spines were observed. WAY-181187 administration (3 mg/kg) for five consecutive days after TBI significantly alleviated cognitive dysfunction at one and four weeks (P < 0.001 and P < 0.01), upregulated BDNF expression in the mPFC and hippocampus at two (P < 0.01 and P < 0.05) and five (P < 0.01 and P < 0.001) weeks and increased the dendritic spine density and the proportions of thin, mushroom-shaped dendrites in the mPFC (P < 0.05, P < 0.001 and P < 0.01) and hippocampus (P < 0.05, P < 0.001 and P < 0.05) at five weeks after TBI. Our results confirm that WAY-181187 administration (3 mg/kg) in the acute phase alleviated cognitive dysfunction after TBI, possibly by upregulating BDNF expression in the mPFC and hippocampus, enhancing neuroplasticity.


Assuntos
Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Aprendizagem em Labirinto , Ratos , Serotonina/metabolismo
18.
Neurosci Lett ; 769: 136431, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34974110

RESUMO

NLRP3 inflammasome plays a crucial role in the innate immune system. Our group previously reported that the microglial adenosine 2A receptor (A2AR) regulates canonical neuroinflammation, which is affected by the glutamate concentration. However, the regulatory effect of A2AR on NLRP3 inflammasome and the effects of glutamate concentration remain unknown. Therefore, we aimed to investigate the regulatory effect of microglial A2AR on NLRP3 inflammasome assembly and activation as well as the effects of glutamate concentration on the inflammasome assembly and activation. Experiments were conducted on magnetically sorted primary microglia from P14 mice. The results showed that pharmacological A2AR activation ameliorated NLRP3 activation under no or low glutamate concentrations, but this effect was reversed by high glutamate concentrations. Moreover, the mRNA levels of NLRP3 inflammasome-related genes were not affected by A2AR activation or the glutamate concentration. We further demonstrated that A2AR activation inhibited the interaction between NLRP3 and caspase 1 under no or low glutamate concentrations while promoting their interaction under high glutamate concentrations. The oligomerization of ASC also showed a similar trend. In conclusion, our findings proved that the high glutamate concentration could reverse the inhibition of A2AR on NLRP3 inflammasome activation by modulating its assembly, which provides new insights into the regulatory effect of A2AR on neuroinflammation under different pathological conditions.


Assuntos
Ácido Glutâmico/metabolismo , Inflamassomos/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Células Cultivadas , Ácido Glutâmico/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Multimerização Proteica
19.
Neurochem Int ; 149: 105145, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34324942

RESUMO

The heteromeric complexes of adenosine 2A receptor (A2AR) and N-methyl-D-aspartate receptor (NMDAR) have recently been confirmed in cell experiments, while its in situ detection at the subcellular level of brain tissue has not yet been achieved. Proximity Ligation Assay (PLA) enables the detection of low-abundance proteins and their interactions at the cellular level with high specificity and sensitivity, while Transmission electron microscope (TEM) is an excellent tool for observing subcellular structures. To develop a highly efficient and reproducible technique for in situ detection of protein interactions at subcellular levels, in this study, we modified the standard PLA sample preparation method to make the samples suitable for analysis by transmission electron microscopy. Using this technique, we successfully detected the heteromers of A2AR and NMDAR1, the essential subunit of NMDA receptor on the hippocampal synaptic structure in mice. Our results show that the distribution of this heteromer is different in different hippocampal subregions. This technique holds the potential for being a reliable method to detect protein interactions at the subcellular level and unravel their unknown functions.


Assuntos
Hipocampo/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Receptor A2A de Adenosina/ultraestrutura , Receptores de N-Metil-D-Aspartato/ultraestrutura , Sinapses/ultraestrutura , Animais , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/fisiologia , Receptor A2A de Adenosina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
20.
Cell Prolif ; 54(2): e12971, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33349993

RESUMO

OBJECTIVES: The present study clarified the role and signalling pathway of Ski in regulating proliferation and apoptosis in fibroblasts under high-glucose (HG) conditions. MATERIALS AND METHODS: The proliferation and apoptosis of rat primary fibroblasts were assessed using EdU incorporation and TUNEL assays. The protein and phosphorylation levels of the corresponding factors were measured using immunofluorescence staining and Western blotting. Immunoprecipitation was used to determine the interactions between Ski and FoxO1 or Ski and HDAC1. The Ski protein was overexpressed via recombinant adenovirus transfection, and FoxO1 and HDAC1 were knocked down using targeted small-interfering RNA. RESULTS: The present study found that HG inhibited fibroblast proliferation, increased apoptosis and reduced Ski levels in rat primary fibroblasts. Conversely, increasing Ski protein levels alleviated HG-induced proliferation inhibition and apoptosis promotion. Increasing Ski protein levels also increased Ski binding to FoxO1 to decrease FoxO1 acetylation, and interfering with FoxO1 caused loss of the regulatory effect of Ski in fibroblasts under HG. Increasing Ski protein levels decreased FoxO1 acetylation via HDAC1-mediated deacetylation. CONCLUSIONS: Therefore, these findings confirmed for the first time that Ski regulated fibroblast proliferation and apoptosis under HG conditions via the FoxO1 pathway.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glucose/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Acetilação/efeitos dos fármacos , Animais , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Fosforilação/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Smad2 , Proteína Smad3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA