Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(39): 17743-17747, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36162057

RESUMO

The first example of a homoleptic f-block borolide sandwich complex is presented and shown to be a high-performance single-molecule magnet (SMM). The bis(borolide) complex [K(2.2.2)][[1-(piperidino)-2,3,4,5-tetraphenylborolyl]2Dy] (1) features an unusual example of an anionic Ln3+ metallocene that supports short metal-ligand bonds and a high degree of linearity around the central Dy3+ ion, resulting in comparatively large barriers to magnetization reversal (Ueff = 1600 cm-1 for the most linear orientation) and, importantly, a high blocking temperature (TB, defined as T(τ100s)) of 66 K. These metrics put complex 1 among the very best performing SMMs reported to date and highlight the potential of dianionic borolide ligands to increase ligand field axiality, compared to monoanionic cyclic ligands, to ultimately maximize magnetic anisotropy in f-block-based SMMs.

2.
J Am Chem Soc ; 143(27): 10292-10300, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34191502

RESUMO

Energetic hot electrons generated in Mn-doped quantum dots (QDs) via exciton-to-hot-electron upconversion possess long-range transfer capability. The long-range hot electron transfer allowed for superior efficiency in various photocatalytic reduction reactions compared to conventional QDs, which solely rely on the transfer of band edge electrons. Here we show that the synergistic action of the interfacial hole transfer to the initial reactant and subsequent long-range hot electron transfer to an intermediate species enables highly efficient redox-neutral photocatalytic reactions, thereby extending the benefits of Mn-doped QDs beyond reduction reactions. The photocatalytic conversion of formate (HCOO-) to carbon monoxide (CO), which is an important route to obtain a key component of syngas from an abundant source, is an exemplary redox-neutral reaction that exhibits a drastic enhancement of catalytic efficiency by Mn-doped QDs. Mn-doped QDs increased the formate to CO conversion rate by 2 orders of magnitude compared to conventional QDs with high selectivity. Spectroscopic study of charge transfer processes and the computational study of reaction intermediates revealed the critical role of long-range hot electron transfer to an intermediate species lacking binding affinity to the QD surface for efficient CO production. Specifically, we find that the formate radical (HCOO)•, formed after the initial hole transfer from the QD to HCOO-, undergoes isomerization to the (HOCO)• radical that subsequently is reduced to yield CO and OH-. Long-range hot electron transfer is particularly effective for reducing the nonbinding (HOCO)• radical, resulting in the large enhancement of CO production by overcoming the limitation of interfacial electron transfer.

3.
Inorg Chem ; 60(13): 9394-9401, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34121398

RESUMO

Lanthanide-transition metal complexes continue to be of interest, not only because of their synthetic challenge but also of their promising magnetic properties. Computational work examining the chemical bonding between lanthanides and transition metals in PyCp2Ln-TMCp(CO)2 (DyPyCp22- = [2,6-(CH2C5H3)2C5H3N]2-) reveals strong Ln-TM dative bonds. Gas-phase optimized geometries are in good agreement with experimental structures at the density functional theory (DFT) level with large-core pseudopotentials. From La to Lu, there is a small increase in the bond dissociation energy, as well as a decrease in Ln-Fe bond lengths. Energy decomposition analyses attribute this trend to an increase in the electrostatic contribution from the decreasing bond length and a modest increase in the orbital contribution. The natural bond orbital analysis clearly indicates that 3d6 "lone pairs" in the [FeCp(CO)2]- fragment act as a Lewis bases donating nearly 0.5 electron to Ln virtual orbitals of mainly d character. The interfragment bonding was also quantified by the quantum theory of atoms in molecules, which indicates that the Ln-Fe bond is more covalent than the Ca-Fe bond in the hypothetical CpCa-FeCp(CO)2 but less covalent than the Zn-Fe bond in the hypothetical CpZn-FeCp(CO)2. Further comparisons suggest that to the [PyCp2Ln]+ cation the [FeCp(CO)2]- anion appears much like a halide. Overall, these Ln-TM dative bonds appear to have strong electrostatic contributions as well as significant orbital mixing and dispersion contributions.

4.
Inorg Chem ; 60(21): 16160-16167, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637613

RESUMO

Borolides (BC42-) can be considered as dianionic heterocyclic analogues of monoanionic cyclopentadienides. Although both are formally six-π-electron donors, we herein demonstrate that the electronic structure of their corresponding transition metal complexes differs significantly, leading to altered properties. Specifically, the 18-electron sandwich complex Ni(iPr2NBC4Ph2)2 (1) features an ∼90° angle between the Ni-B-N planes and is best described as a combination of three limiting resonance structures with the major contribution stemming from a formally Ni2+ species bound to two monoanionic radical (BC4•-) ligands. Compound 1 displays two sequential one-electron oxidation events over a small potential range of <0.2 V, which strikingly contrasts the large potential separations between redox partners in the family of metallocenes, and the potential reasons for this unusual observation are discussed.

5.
Inorg Chem ; 59(7): 5206-5217, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32212626

RESUMO

The development of noble-metal-free catalysts capable of electrochemically converting carbon dioxide (CO2) selectively into value-added compounds remains one of the central challenges in catalysis research. Here, we present a systematic study of Fe(II) complexes of the functionalized ligands bpyRPY2Me (bpyPY2Me = 6-(1,1-bis(pyridin-2-yl)ethyl)-2,2'-bipyridine) in the pursuit of water-stable molecular Fe complexes that are selective for the catalytic formation of CO from CO2. Taking advantage of the inherently high degree of tunability of this ligand manifold, we followed a bioinspired approach by installing protic functional groups of varying acidities (-H, -OH, -OMe, -NHEt, and -NEt2) into the ligand framework to systematically modify the second coordination sphere of the Fe center. This family of [(bpyRPY2Me)FeII] complexes was characterized using single-crystal X-ray analysis, 1H NMR spectroscopy, and mass spectrometry. Comparative catalytic evaluation of this set of compounds via voltammetry and electrolysis experiments identified [(bpyNHEtPY2Me)Fe]2+ in particular as an efficient, iron-based, non-heme CO2 electroreduction catalyst that displays significant selectivity for the conversion of CO2 to CO in acetonitrile solution with 11 M H2O. We propose that the NH group acts as a local proton source for cleaving the C-O bond in CO2 to form CO. Interestingly, the complex with the most acidic functional group in the second coordination sphere, [(bpyOHPY2Me)Fe]2+, favors formation of H2 over CO. Our results correlate the selectivity of water versus carbon dioxide reduction to the acidity of the second coordination sphere functional group and emphasize the continued untapped potential that synthetic molecular chemistry offers in the pursuit of next-generation CO2 reduction electrocatalysts.

6.
Angew Chem Int Ed Engl ; 59(32): 13335-13340, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32367589

RESUMO

We report the first f-block-ruthenocenophane complexes 1 (Dy) and 2 (Tb) and provide a comparative discussion of their magnetic structure with respect to earlier reported ferrocenophane analogues. While axial elongation of the rare trigonal-prismatic geometry stabilizes the magnetic ground state in the case of Dy3+ and results in a larger barrier to magnetization reversal (U), a decrease in U is observed for the case of Tb3+ .

7.
J Am Chem Soc ; 141(16): 6569-6582, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30925213

RESUMO

The electrocatalytic reduction of carbon dioxide (CO2) could be a powerful tool for generating chemical fuels and feedstock molecules relevant to the chemical industry. One of the major challenges for molecular catalysts remains the necessity of high overpotentials, which can be overcome by identifying novel routes that improve the energetic reaction trajectory of critical intermediates during catalysis. In this combined experimental and computational study, we show that imidazolium functionalization of molecular fac-Mn(CO)3 bipyridine complexes results in CO2 reduction at mild electrochemical potentials in the presence of H2O. Importantly, our studies suggest that imidazolium groups in the secondary coordination sphere promote the formation of a local hydration shell that facilitates the protonation of CO2 reduction intermediates. As such, we propose a synergistic relationship between the functionalized catalyst and H2O, which stands in contrast to other systems in which the presence of H2O frequently has detrimental effects on catalysis.

8.
Angew Chem Int Ed Engl ; 57(27): 8164-8169, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29734485

RESUMO

A rare example of an organometallic terbium single-ion magnet is reported. A Tb3+ -[1]ferrocenophane complex displays a larger barrier to magnetization reversal than its isostructural Dy3+ analogue, which is reminiscent of trends observed for lanthanide-bis-phthalocyanine complexes. Detailed ab initio calculations support the experimental observations and suggest a significantly larger ground-state stabilization for the non-Kramers ion Tb3+ in the Tb complex than for the Kramers-ion Dy3+ in the Dy complex.

9.
Angew Chem Int Ed Engl ; 57(27): 8144-8148, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29719101

RESUMO

We present an investigation of isostructural complexes that feature unsupported direct bonds between a formally trivalent lanthanide ion (Dy3+ ) and either a first-row (Fe) or a second-row (Ru) transition metal (TM) ion. The sterically rigid, yet not too bulky ligand PyCp22- (PyCp22- =[2,6-(CH2 C5 H3 )2 C5 H3 N]2- ) facilitates the isolation and characterization of PyCp2 Dy-FeCp(CO)2 (1; d(Dy-Fe)=2.884(2) Å) and PyCp2 Dy-RuCp(CO)2 (2; d(Dy-Ru)=2.9508(5) Å). Computational and spectroscopic studies suggest strong TM→Dy bonding interactions. Both complexes exhibit field-induced slow magnetic relaxation with effectively identical energy barriers to magnetization reversal. However, in going from Dy-Fe to Dy-Ru bonding, we observed faster magnetic relaxation at a given temperature and larger direct and Raman coefficients, which could be due to differences in the bonding and/or spin-phonon coupling contributions to magnetic relaxation.


Assuntos
Complexos de Coordenação/química , Disprósio/química , Magnetismo , Elementos de Transição/química , Complexos de Coordenação/síntese química , Ligantes , Conformação Molecular , Temperatura
10.
J Am Chem Soc ; 139(40): 13993-13996, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28921978

RESUMO

We present the first examples of CO2 electro-reduction catalysts that feature charged imidazolium groups in the secondary coordination sphere. The functionalized Lehn-type catalysts display significant differences in their redox properties and improved catalytic activities as compared to the conventional reference catalyst. Our results suggest that the incorporated imidazolium moieties do not solely function as a charged tag but also alter mechanistic aspects of catalysis.

11.
J Am Chem Soc ; 139(42): 14877-14880, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29024592

RESUMO

A synthetic protocol was developed that involves the transmetalation of a mono-dysprosium-[1]ferrocenophane complex with DyX3 (X = Cl- or I-) to afford [Dy3Fc6Li2(THF)2]-, featuring a rare linear arrangement of magnetically anisotropic Dy3+ ions. The close spatial inter-lanthanide proximity, in combination with µ2-bridging sp2-hybridized CCp groups, enforces significant magnetic coupling and results in hard single-molecule magnet (SMM) behavior, with an effective barrier to magnetization reversal of up to 268 cm-1. Our results highlight the versatility of lanthanide metallocenophane architectures toward the development of novel multinuclear SMM frameworks.

12.
J Am Chem Soc ; 139(24): 8058-8061, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28590123

RESUMO

The first example of a lanthanide metallocenophane complex has been isolated as [Li(THF)4][DyFc3Li2(THF)2] (1). The molecular structure of complex 1 differs dramatically from those of main group and transition metal ferrocenophane complexes and features a distorted trigonal prismatic geometry around the Dy(III) ion and close intramolecular Dy···Fe distances. Furthermore, complex 1 exhibits all characteristics of a soft single-molecule magnet.

13.
Chemistry ; 22(1): 361-9, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26608517

RESUMO

A new decadentate dinucleating ligand containing a pyridazine bridging group and pyridylic arms has been synthesized and characterized by analytical and spectroscopic techniques. Four new dinuclear cobalt complexes featuring this ligand have been prepared and thoroughly characterized both in the solid state (X-ray diffraction) and in solution (1D and 2D NMR spectroscopy, ESI-MS, and electrochemical techniques). The flexible but stable coordination environment provided by the ligand scaffold when coordinating Co in different oxidation states is shown to play a crucial role in the performance of the set of complexes when tested as catalysts for the photochemical hydrogen evolution reaction (HER) and chemical oxygen reduction reaction (ORR).

14.
Inorg Chem ; 53(21): 11388-95, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25097094

RESUMO

The ubiquity of vanadium oxo complexes in the V+ and IV+ oxidation states has contributed to a comprehensive understanding of their electronic structure and reactivity. However, despite being predicted to be stable by ligand-field theory, the isolation and characterization of a well-defined terminal mononuclear vanadium(III) oxo complex has remained elusive. We present the synthesis and characterization of a unique terminal mononuclear vanadium(III) oxo species supported by the pentadentate polypyridyl ligand 2,6-bis[1,1-bis(2-pyridyl)ethyl]pyridine (PY5Me2). Exposure of [V(II)(NCCH3)(PY5Me2)](2+) (1) to either dioxygen or selected O-atom-transfer reagents yields [V(IV)(O)(PY5Me2)](2+) (2). The metal-centered one-electron reduction of this vanadium(IV) oxo complex furnishes a stable, diamagnetic [V(III)(O)(PY5Me2)](+) (3) species. The vanadium(III) oxo species is unreactive toward H- and O-atom transfer but readily reacts with protons to form a putative vanadium hydroxo complex. Computational results predict that further one-electron reduction of the vanadium(III) oxo species will result in ligand-based reduction, even though pyridine is generally considered to be a poor π-accepting ligand. These results have implications for future efforts toward low-valent vanadyl chemistry, particularly with regard to the isolation and study of formal vanadium(II) oxo species.


Assuntos
Compostos Organometálicos/química , Oxigênio/química , Vanádio/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Teoria Quântica
15.
Inorg Chem ; 53(9): 4777-90, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24746142

RESUMO

Oxidation of quadruply bonded Cr2(dpa)4, Mo2(dpa)4, MoW(dpa)4, and W2(dpa)4 (dpa = 2,2'-dipyridylamido) with 2 equiv of silver(I) triflate or ferrocenium triflate results in the formation of the two-electron-oxidized products [Cr2(dpa)4](2+) (1), [Mo2(dpa)4](2+) (2), [MoW(dpa)4](2+) (3), and [W2(dpa)4](2+) (4). Additional two-electron oxidation and oxygen atom transfer by m-chloroperoxybenzoic acid results in the formation of the corresponding metal-oxo compounds [Mo2O(dpa)4](2+) (5), [WMoO(dpa)4](2+) (6), and [W2O(dpa)4](2+) (7), which feature an unusual linear M···M≡O structure. Crystallographic studies of the two-electron-oxidized products 2, 3, and 4, which have the appropriate number of orbitals and electrons to form metal-metal triple bonds, show bond distances much longer (by >0.5 Å) than those in established triply bonded compounds, but these compounds are nonetheless diamagnetic. In contrast, the Cr-Cr bond is completely severed in 1, and the resulting two isolated Cr(3+) magnetic centers couple antiferromagnetically with J/kB= -108(3) K [-75(2) cm(-1)], as determined by modeling of the temperature dependence of the magnetic susceptibility. Density functional theory (DFT) and multiconfigurational methods (CASSCF/CASPT2) provide support for "stretched" and weak metal-metal triple bonds in 2, 3, and 4. The metal-metal distances in the metal-oxo compounds 5, 6, and 7 are elongated beyond the single-bond covalent radii of the metal atoms. DFT and CASSCF/CASPT2 calculations suggest that the metal atoms have minimal interaction; the electronic structure of these complexes is used to rationalize their multielectron redox reactivity.

16.
J Am Chem Soc ; 134(45): 18546-9, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23110653

RESUMO

The synthesis and magnetic properties of three new bipyrimidyl radical-bridged dilanthanide complexes, [(Cp*(2)Ln)(2)(µ-bpym(•))](+) (Ln = Gd, Tb, Dy), are reported. Strong Ln(III)-bpym(•-) exchange coupling is observed for all species, as indicated by the increases in χ(M)T at low temperatures. For the Gd(III)-containing complex, a fit to the data reveals antiferromagnetic coupling with J = -10 cm(-1) to give an S = (13)/(2) ground state. The Tb(III) and Dy(III) congeners show single-molecule magnet behavior with relaxation barriers of U(eff) = 44(2) and 87.8(3) cm(-1), respectively, a consequence of the large magnetic anisotropies imparted by these ions. Significantly, the latter complex exhibits a divergence of the field-cooled and zero-field-cooled dc susceptibility data at 6.5 K and magnetic hysteresis below this temperature.


Assuntos
Elementos da Série dos Lantanídeos/química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Pirimidinas/química , Radicais Livres/química , Fenômenos Magnéticos , Estrutura Molecular
17.
J Am Chem Soc ; 133(9): 2856-9, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21319824

RESUMO

Four-electron oxidation of the quadruply bonded W(2)(II,II) compound W(2)(2,2'-dipyridylamide)(4), 1, results in the formation of a novel, diamagnetic ditungsten terminal oxo compound [W(2)O(2,2'-dipyridylamide)(4)](2+), 2. In contrast to the chemical inertness of mononuclear tungsten oxo species, 2 undergoes a four-electron reduction including oxygen-atom transfer in reactions with excess tri-tert-butylphosphine in acetonitrile to recover 1. This unusual chemically reversible multielectron reactivity is ascribed to the cooperation of W-O and W-W multiple bonding.


Assuntos
2,2'-Dipiridil/análogos & derivados , Compostos de Tungstênio/química , Amidas/química , Cristalografia por Raios X , Modelos Moleculares , Oxirredução
18.
Inorg Chem ; 50(21): 10592-9, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21932807

RESUMO

The heterometallic complexes CrCrM(dpa)(4)Cl(2) (dpa = 2,2'-dipyridylamide) featuring linear Cl-Cr≡Cr···M-Cl chains can regiospecifically be modified via axial ligand substitution to yield OTf-Cr≡Cr···M-Cl chains (OTf = triflate) with M being Fe, Mn, or Co. The effect of OTf substitution on the Cr side of the molecule has an unusual and profound structural impact on the square-pyramidal transition metal M. Specifically, elongation of the four equatorial M-N(py) bonds and the axial M-Cl bonds by 0.03 and 0.09 Å for Fe and 0.07 and 0.11 Å for Mn is observed. The longer M-Cl and M-N(py) bonds result from subtle interactions between the equatorial dpa ligand and the three metal ions. The equatorial dpa ligand responds to the introduction of the more labile OTf ligand at Cr by binding more strongly to this Cr ion which in turn weakens bonding to M. The ligand field experienced by M can be tuned by changing the Cr axial ligand, and this effect is observed in electrochemical measurements of the iron compounds.


Assuntos
Amidas/química , Química Orgânica/métodos , Cromo/química , Complexos de Coordenação/síntese química , Compostos Organometálicos/síntese química , Piridinas/química , Complexos de Coordenação/análise , Cristalografia por Raios X , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/análise , Estereoisomerismo
19.
Inorg Chem ; 50(16): 7650-61, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21755922

RESUMO

Binuclear quadruply bonded complexes Cr(2)(dpa)(4) (1, dpa = 2,2'-dipyridylamide), Mo(2)(dpa)(4) (2), and W(2)(dpa)(4) (3) react with anhydrous FeCl(2), yielding heterometallic compounds CrCrFe(dpa)(4)Cl(2) (4), MoMoFe(dpa)(4)Cl(2) (5), and WWFe(dpa)(4)Cl(2) (6). These molecules are structurally similar, having a linear M≡M···Fe chain that is axially capped by chloride ions and is equatorially supported by the helically twisted dpa ligands. A structurally related zinc analog, CrCrZn(dpa)(4)Cl(2) (7), can be prepared upon metalation of 1 with ZnCl(2). This reaction also persistently produces a 2:1 adduct of ZnCl(2) with 1, [Cr(2)(dpa)(4)](ZnCl(2))(2) (8), which is in equilibrium with 7 and has the two zinc ions bound externally to the Cr(2) core and axial bridging chloro ligands attached to each Cr ion. The sole isolable product of the addition of ZnCl(2) to 3 is a 1:1 adduct, [W(2)(dpa)(4)]ZnCl(2) (9). The structurally related chain complexes 4, 5, 6, and 7 are characterized by X-ray crystallography, UV-vis spectroscopy, cyclic voltammetry, and (57)Fe Mössbauer spectroscopy for the iron complexes in order to gain insights into the nature of heterometallic interactions, electronic excited states, and redox properties of these compounds, which have implications for all other M≡M···M' molecules. Additionally, NMR spectroscopy has been used to gain insight into the mechanism of the metalation of 1 by Zn(II).


Assuntos
Cromo/química , Complexos de Coordenação/química , Ferro/química , Molibdênio/química , Tungstênio/química , Zinco/química , Cristalografia por Raios X , Eletroquímica , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectroscopia por Absorção de Raios X
20.
J Am Chem Soc ; 132(40): 14261-72, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20860382

RESUMO

Crystal structures of the heterometallic compounds CrCrFe(dpa)(4)Cl(2) (1), CrCrMn(dpa)(4)Cl(2) (2), and MoMoMn(dpa)(4)Cl(2) (3) (dpa = 2,2'-dipyridylamide) show disorder in the metal atom positions such that the linear M(A)[quadruple bond]M(A)···M(B) array for a given molecule in the crystal is oriented in one of two opposing directions. Despite the fact that the direct coordination sphere of the metals in the two crystallographically independent orientations is identical, subtle differences in some metal-ligand bond distances are observed in 1 and 3 due to differences in the orientation of a solvent molecule of crystallization. The Fe(II) and Mn(II) ions serve as sensitive local spectroscopic probes that have been interrogated by Mössbauer spectroscopy and high-field EPR spectroscopy, respectively. The subtle differences in the two independent Fe and Mn sites in 1 and 3 unexpectedly give rise to unusually large differences in the measured Fe quadrupole splitting (ΔE(Q)) in 1 and Mn zero-field splitting (D) in 3. Variable-temperature/single-crystal EPR spectroscopy has allowed us to determine that the temperature-dependent D tensors in 3 are oriented along the metal-metal axis and that they show significantly different dynamic behavior with temperature. The differences in ΔE(Q) and D are reproduced by density functional calculations on truncated models for 1 and 3 that lack the quadruply bonded M(A)[quadruple bond]M(A) groups, though the magnitude of the calculated effect is not as large as that observed experimentally. We suggest that the large observed differences in ΔE(Q) and D for the individual sites could be due to the influence of the strong diamagnetic anisotropy of the quadruply bonded M[quadruple bond]M unit.


Assuntos
Magnetismo , Metais/química , Espectrofotometria Infravermelho/métodos , Espectroscopia de Mossbauer/métodos , Temperatura Baixa , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA