Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Pharmacol Exp Ther ; 388(2): 376-385, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37770198

RESUMO

Status epilepticus (SE) is a life-threatening development of self-sustaining seizures that becomes resistant to benzodiazepines when treatment is delayed. Benzodiazepine pharmacoresistance is thought in part to result from internalization of synaptic GABAA receptors, which are the main target of the drug. The naturally occurring neurosteroid allopregnanolone is a therapy of interest against SE for its ability to modulate all isoforms of GABAA receptors. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been partially effective in combination with benzodiazepines in mitigating SE-associated neurotoxicity. In this study, allopregnanolone as an adjunct to midazolam or midazolam-ketamine combination therapy was evaluated for efficacy against cholinergic-induced SE. Adult male rats implanted with electroencephalographic (EEG) telemetry devices were exposed to the organophosphorus chemical (OP) soman (GD) and treated with an admix of atropine sulfate and HI-6 at 1 minute after exposure followed by midazolam, midazolam-allopregnanolone, or midazolam-ketamine-allopregnanolone 40 minutes after seizure onset. Neurodegeneration, neuronal loss, and neuroinflammation were assessed 2 weeks after GD exposure. Seizure activity, EEG power integral, and epileptogenesis were also compared among groups. Overall, midazolam-ketamine-allopregnanolone combination therapy was effective in reducing cholinergic-induced toxic signs and neuropathology, particularly in the thalamus and hippocampus. Higher dosage of allopregnanolone administered in combination with midazolam and ketamine was also effective in reducing EEG power integral and epileptogenesis. The current study reports that there is a promising potential of neurosteroids in combination with benzodiazepine and ketamine treatments in a GD model of SE. SIGNIFICANCE STATEMENT: Allopregnanolone, a naturally occurring neurosteroid, reduced pathologies associated with soman (GD) exposure such as epileptogenesis, neurodegeneration, and neuroinflammation, and suppressed GD-induced toxic signs when used as an adjunct to midazolam and ketamine in a delayed treatment model of soman-induced status epilepticus (SE) in rats. However, protection was incomplete, suggesting that further studies are needed to identify optimal combinations of antiseizure medications and routes of administration for maximal efficacy against cholinergic-induced SE.


Assuntos
Ketamina , Neuroesteroides , Soman , Estado Epiléptico , Ratos , Masculino , Animais , Midazolam/farmacologia , Midazolam/uso terapêutico , Ketamina/farmacologia , Ketamina/uso terapêutico , Pregnanolona/efeitos adversos , Soman/toxicidade , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Doenças Neuroinflamatórias , Neuroesteroides/uso terapêutico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Convulsões/tratamento farmacológico , Benzodiazepinas , Colinérgicos/efeitos adversos , Receptores de GABA-A , Ácido gama-Aminobutírico
2.
J Pharmacol Exp Ther ; 388(2): 347-357, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37977809

RESUMO

Benzodiazepine pharmacoresistance develops when treatment of status epilepticus (SE) is delayed. This response may result from gamma-aminobutyric acid A receptors (GABAAR) internalization that follows prolonged SE; this receptor trafficking results in fewer GABAAR in the synapse to restore inhibition. Increase in synaptic N-methyl-D-aspartate receptors (NMDAR) also occurs in rodent models of SE. Lacosamide, a third-generation antiseizure medication (ASM), acts on the slow inactivation of voltage-gated sodium channels. Another ASM, rufinamide, similarly acts on sodium channels by extending the duration of time spent in the inactivation stage. Combination therapy of the benzodiazepine midazolam, NMDAR antagonist ketamine, and ASMs lacosamide (or rufinamide) was investigated for efficacy against soman (GD)-induced SE and neuropathology. Adult male rats implanted with telemetry transmitters for monitoring electroencephalographic (EEG) activity were exposed to a seizure-inducing dose of GD and treated with an admix of atropine sulfate and HI-6 1 minute later and with midazolam monotherapy or combination therapy 40 minutes after EEG seizure onset. Rats were monitored continuously for seizure activity for two weeks, after which brains were processed for assessment of neurodegeneration, neuronal loss, and neuroinflammatory responses. Simultaneous administration of midazolam, ketamine, and lacosamide (or rufinamide) was more protective against GD-induced SE compared with midazolam monotherapy. In general, lacosamide triple therapy had more positive outcomes on measures of epileptogenesis, EEG power integral, and the number of brain regions protected from neuropathology compared with rats treated with rufinamide triple therapy. Overall, both drugs were well tolerated in these combination models. SIGNIFICANCE STATEMENT: We currently report on improved efficacy of antiseizure medications lacosamide and rufinamide, each administered in combination with ketamine (NMDAR antagonist) and midazolam (benzodiazepine), in combatting soman (GD)-induced seizure, epileptogenesis, and brain pathology over that provided by midazolam monotherapy, or dual therapy of midazolam and lacosamide (or rufinamide) in rats. Administration of lacosamide as adjunct to midazolam and ketamine was particularly effective against GD-induced toxicity. However, protection was incomplete, suggesting the need for further study.


Assuntos
Ketamina , Soman , Estado Epiléptico , Triazóis , Ratos , Masculino , Animais , Midazolam/uso terapêutico , Midazolam/farmacologia , Lacosamida/efeitos adversos , Ketamina/farmacologia , Ketamina/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Convulsões/tratamento farmacológico , Benzodiazepinas , Colinérgicos/efeitos adversos , Ácido gama-Aminobutírico
3.
Neurobiol Dis ; 133: 104537, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31454548

RESUMO

The initiation and maintenance phases of cholinergic status epilepticus (SE) are associated with maladaptive trafficking of synaptic GABAA and glutamate receptors. The resulting pharmacoresistance reflects a decrease in synaptic GABAA receptors and increase in NMDA and AMPA receptors, which tilt the balance between inhibition and excitation in favor of the latter. If these changes are important to the pathophysiology of SE, both should be treated, and blocking their consequences should have therapeutic potential. We used a model of benzodiazepine-refractory SE (RSE) (Tetz et al., 2006) and a model of soman-induced SE to test this hypothesis. Treatment of RSE with combinations of the GABAAR agonists midazolam or diazepam and the NMDAR antagonists MK-801 or ketamine terminated RSE unresponsive to high-dose monotherapy with benzodiazepines, ketamine or other antiepileptic drugs (AEDs). It also reduced RSE-associated neuronal injury, spatial memory deficits and the occurrence of spontaneous recurrent seizures (SRS), tested several weeks after SE. Treatment of sc soman-induced SE similarly showed much greater reduction of EEG power by a combination of midazolam with ketamine, compared to midazolam monotherapy. When treating late (40 min after seizure onset), there may not be enough synaptic GABAAR left to be able to restore inhibition with maximal GABAAR stimulation, and further benefit is derived from the addition of an AED which increases inhibition or reduces excitation by a non-GABAergic mechanism. The midazolam-ketamine-valproate combination is effective in terminating RSE. 3-D isobolograms demonstrate positive cooperativity between midazolam, ketamine and valproate, without any interaction between the toxicity of these drugs, so that the therapeutic index is increased by combination therapy between GABAAR agonist, NMDAR antagonist and selective AEDs. We compared this drug combination based on the receptor trafficking hypothesis to treatments based on clinical practice. The midazolam-ketamine-valproate combination is far more effective in stopping RSE than the midazolam-fosphenytoin-valproate combination inspired from clinical guidelines. Furthermore, sequential administration of midazolam, ketamine and valproate is far less effective than simultaneous treatment with the same drugs at the same dose. These data suggest that we should re-evaluate our traditional treatment of RSE, and that treatment should be based on pathophysiology. The search for a better drug has to deal with the fact that most monotherapy leaves half the problem untreated. The search for a better benzodiazepine should acknowledge the main cause of pharmacoresistance, which is loss of synaptic GABAAR. Future clinical trials should consider treating both the failure of inhibition and the runaway excitation which characterize RSE, and should include an early polytherapy arm.


Assuntos
Anticonvulsivantes/farmacologia , Inibidores da Colinesterase/toxicidade , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Animais , Quimioterapia Combinada/métodos , Ketamina/farmacologia , Masculino , Midazolam/farmacologia , Agonistas Muscarínicos/toxicidade , Agentes Neurotóxicos/toxicidade , Pilocarpina/toxicidade , Ratos , Ratos Sprague-Dawley , Soman/toxicidade , Ácido Valproico/farmacologia
4.
Epilepsy Behav ; 101(Pt B): 106367, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636007

RESUMO

The transition from single seizures to status epilepticus (SE) is associated with malaptive trafficking of synaptic gamma-aminobutyric acid (GABAA) and glutamate receptors. The receptor trafficking hypothesis proposes that these changes are key events in the development of pharmacoresistance to antiepileptic drugs (AEDs) during SE, and that blocking their expression will help control drug-refractory SE (RSE). We tested this hypothesis in a model of SE induced by very high-dose lithium and pilocarpine (RSE), and in a model of SE induced by sc soman. Both models are refractory to benzodiazepines when treated 40 min after seizure onset. Our treatments aimed to correct the loss of inhibition because of SE-associated internalization of synaptic GABAA receptors (GABAAR), using an allosteric GABAAR modulator, sometimes supplemented by an AED acting at a nonbenzodiazepine site. At the same time, we reduced excitation because of increased synaptic localization of NMDA and AMPA (?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate) receptors (NMDAR, AMPAR (?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, N-methyl-D-aspartate receptors)) with an NMDAR channel blocker, since AMPAR changes are NMDAR-dependent. Treatment of RSE with combinations of the GABAAR allosteric modulators midazolam or diazepam and the NMDAR antagonists dizocilpine or ketamine terminated RSE unresponsive to high-dose monotherapy. It also reduced RSE-associated neuronal injury, spatial memory deficits, and the occurrence of spontaneous recurrent seizures (SRS), tested several weeks after SE. Treatment of soman-induced SE also reduced seizures, behavioral deficits, and epileptogenesis. Addition of an AED further improved seizure outcome in both models. Three-dimensional isobolograms demonstrated positive cooperativity between midazolam, ketamine, and valproate, without any interaction between the toxicity of these drugs, so that the therapeutic index was increased by combination therapy. The midazolam-ketamine-valproate combination based on the receptor trafficking hypothesis was far more effective in stopping RSE than the midazolam-fosphenytoin-valproate combination inspired from clinical guidelines for the treatment of SE. Furthermore, sequential administration of midazolam, ketamine, and valproate was far less effective than simultaneous treatment with the same drugs at the same dose. These data suggest that treatment of RSE should be based at least in part on its pathophysiology. The search for a better treatment should focus on the cause of pharmacoresistance, which is loss of synaptic GABAAR and gain of synaptic glutamate receptors. Both need to be treated. Monotherapy addresses only half the problem. Improved pharmacokinetics will not help pharmacoresistance because of loss of receptors. Waiting for one drug to fail before giving the second drugs gives pharmacoresistance time to develop. Future clinical trials should consider treating both the failure of inhibition and the runaway excitation which characterize RSE, and should include an early polytherapy arm. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".


Assuntos
Anticonvulsivantes/administração & dosagem , Benzodiazepinas/administração & dosagem , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Estado Epiléptico/tratamento farmacológico , Animais , Esquema de Medicação , Epilepsia Resistente a Medicamentos/induzido quimicamente , Epilepsia Resistente a Medicamentos/fisiopatologia , Quimioterapia Combinada , Humanos , Midazolam/administração & dosagem , Pilocarpina/toxicidade , Receptores de GABA-A/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia , Ácido Valproico/administração & dosagem
5.
Ann Neurol ; 82(1): 115-120, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28556259

RESUMO

Status epilepticus is common in neonates and infants, and is associated with neuronal injury and adverse developmental outcomes. γ-Aminobutyric acidergic (GABAergic) drugs, the standard treatment for neonatal seizures, can have excitatory effects in the neonatal brain, which may worsen the seizures and their effects. Using a recently developed model of status epilepticus in postnatal day 7 rat pups that results in widespread neuronal injury, we found that the GABAA agonists phenobarbital and midazolam significantly increased status epilepticus-associated neuronal injury in various brain regions. Our results suggest that more research is needed into the possible deleterious effects of GABAergic drugs on neonatal seizures and on excitotoxic neuronal injury in the immature brain. Ann Neurol 2017;82:115-120.


Assuntos
Midazolam/efeitos adversos , Neurônios/patologia , Fenobarbital/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Contagem de Células , Feminino , Masculino , Ratos , Estado Epiléptico/patologia
6.
Neurobiol Dis ; 104: 41-49, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28461248

RESUMO

Early maladaptive internalization of synaptic GABAA receptors (GABAAR) and externalization of NMDA receptors (NMDAR) may explain the time-dependent loss of potency of standard anti-epileptic drugs (AED) in refractory status epilepticus (SE). We hypothesized that correcting the effects of changes in GABAAR and NMDAR would terminate SE, even when treatment is delayed 40 minutes. SE was induced in adult Sprague-Dawley rats with a high dose of lithium and pilocarpine. The GABAAR agonist midazolam, the NMDAR antagonist ketamine and the AED valproate were injected 40 min after SE onset in combination or as monotherapy. The midazolam-ketamine-valproate combination was more efficient than triple-dose midazolam, ketamine or valproate monotherapy or higher-dose dual therapy in reducing several parameters of SE severity. Triple therapy also reduced SE-induced acute neuronal injury and spatial memory deficits. In addition, simultaneous triple therapy was more efficient than sequential triple therapy: giving the three drugs simultaneously was more efficient at stopping seizures than the standard practice of giving them sequentially. Furthermore, midazolam-ketamine-valproate therapy suppressed seizures far better than the midazolam-fosphenytoin-valproate therapy, which follows evidence-based AES guidelines. These results show that a treatment aimed at correcting maladaptive GABAAR and NMDAR trafficking can reduce the severity of SE and its long-term consequences.


Assuntos
Anticonvulsivantes/uso terapêutico , Estado Epiléptico/terapia , Animais , Ondas Encefálicas/efeitos dos fármacos , Terapia Combinada , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada/métodos , Eletroencefalografia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Midazolam/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fenitoína/análogos & derivados , Fenitoína/uso terapêutico , Pilocarpina/toxicidade , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Ácido Valproico/uso terapêutico
7.
Epilepsia ; 58(7): 1199-1207, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28597912

RESUMO

OBJECTIVE: To evaluate acute and long-term effects of intravenous brivaracetam (BRV) and BRV + diazepam (DZP) combination treatment in a rat model of self-sustaining status epilepticus (SSSE). METHODS: Rats were treated with BRV (10 mg/kg) 10 min after initiation of perforant path stimulation (PPS) as early treatment; or BRV (10-300 mg/kg), DZP (1 mg/kg), or BRV (0.3-10 mg/kg) + DZP (1 mg/kg) 10 min after the end of PPS (established SSSE). Seizure activity was recorded electrographically for 24 h posttreatment (acute effects), and for 1 week at 6-8 weeks or 12 months' posttreatment (long-term effects). All treatments were compared with control rats using one-way analysis of variance (ANOVA) and Bonferroni's test, or Kruskal--Wallis and Dunn's multiple comparison tests, when appropriate. RESULTS: Treatment of established SSSE with BRV (10-300 mg/kg) resulted in dose-dependent reduction in SSSE duration and cumulative seizure time, achieving statistical significance at doses ≥100 mg/kg. Lower doses of BRV (0.3-10 mg/kg) + low-dose DZP (1 mg/kg) significantly reduced SSSE duration and number of seizures. All control rats developed spontaneous recurrent seizures (SRS) 6-8 weeks after SSSE, whereas seizure freedom was noted in 2/10, 5/10, and 6/10 rats treated with BRV 200 mg/kg, 300 mg/kg, and BRV 10 mg/kg + DZP, respectively. BRV (10-300 mg/kg) showed a dose-dependent trend toward reduction of SRS frequency, cumulative seizure time, and spike frequency, achieving statistical significance at 300 mg/kg. Combination of BRV (10 mg/kg) + DZP significantly reduced SRS frequency, cumulative seizure time, and spike frequency. In the 12-month follow-up study, BRV (0.3-10 mg/kg) + low-dose DZP markedly reduced SRS frequency, cumulative seizure time, and spike frequency, achieving statistical significance at some doses. Early treatment of SSSE with BRV 10 mg/kg significantly reduced long-term SRS frequency. SIGNIFICANCE: These findings support clinical evaluation of BRV for treatment of status epilepticus or acute repetitive seizures.


Assuntos
Anticonvulsivantes/farmacologia , Diazepam/farmacologia , Modelos Animais de Doenças , Eletroencefalografia/efeitos dos fármacos , Pirrolidinonas/farmacologia , Processamento de Sinais Assistido por Computador , Estado Epiléptico/tratamento farmacológico , Animais , Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiopatologia , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Eletrodos Implantados , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Infusões Intravenosas , Assistência de Longa Duração , Masculino , Via Perfurante/efeitos dos fármacos , Via Perfurante/fisiopatologia , Ratos , Ratos Wistar , Estado Epiléptico/fisiopatologia
8.
Epilepsia ; 58(4): e49-e53, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28225161

RESUMO

During status epilepticus (SE), synaptic γ-aminobutyric acid A receptors (GABAA Rs) become internalized and inactive, whereas spare N-methyl-d-aspartate receptors (NMDARs) assemble, move to the membrane, and become synaptically active. When treatment of SE is delayed, the number of synaptic GABAA Rs is drastically reduced, and a GABAA agonist cannot fully restore inhibition. We used a combination of low-dose diazepam (to stimulate the remaining GABAA Rs), ketamine (to mitigate the effect of the NMDAR increase), and valproate (to enhance inhibition at a nonbenzodiazepine site) to treat seizures in a model of severe cholinergic SE. High doses of diazepam failed to stop electrographic SE, showing that benzodiazepine pharmacoresistance had developed. The diazepam-ketamine-valproate combination was far more effective in stopping SE than triple-dose monotherapy using the same individual drugs. Isobolograms showed that this drug combination's therapeutic actions were synergistic, with positive cooperativity between drugs, whereas drug toxicity was simply additive, without positive or negative cooperativity. As a result, the therapeutic index was improved by this drug combination compared to monotherapy. These results suggest that synergistic drug combinations that target receptor changes can control benzodiazepine-refractory SE.


Assuntos
Anticonvulsivantes/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Eletrodos Implantados , Eletroencefalografia , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Agonistas GABAérgicos/uso terapêutico , Masculino , Agonistas Muscarínicos/toxicidade , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Estado Epiléptico/induzido quimicamente
9.
Epilepsia ; 57(9): 1406-15, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27500978

RESUMO

OBJECTIVE: Pharmacoresistance remains an unsolved therapeutic challenge in status epilepticus (SE) and in cholinergic SE induced by nerve agent intoxication. SE triggers a rapid internalization of synaptic γ-aminobutyric acid A (GABAA ) receptors and externalization of N-methyl-d-aspartate (NMDA) receptors that may explain the loss of potency of standard antiepileptic drugs (AEDs). We hypothesized that a drug combination aimed at correcting the consequences of receptor trafficking would reduce SE severity and its long-term consequences. METHODS: A severe model of SE was induced in adult Sprague-Dawley rats with a high dose of lithium and pilocarpine. The GABAA receptor agonist midazolam, the NMDA receptor antagonist ketamine, and/or the AED valproate were injected 40 min after SE onset in combination or as monotherapy. Measures of SE severity were the primary outcome. Secondary outcomes were acute neuronal injury, spontaneous recurrent seizures (SRS), and Morris water maze (MWM) deficits. RESULTS: Midazolam-ketamine dual therapy was more efficient than double-dose midazolam or ketamine monotherapy or than valproate-midazolam or valproate-ketamine dual therapy in reducing several parameters of SE severity, suggesting a synergistic mechanism. In addition, midazolam-ketamine dual therapy reduced SE-induced acute neuronal injury, epileptogenesis, and MWM deficits. SIGNIFICANCE: This study showed that a treatment aimed at correcting maladaptive GABAA receptor and NMDA receptor trafficking can stop SE and reduce its long-term consequences. Early midazolam-ketamine dual therapy may be superior to monotherapy in the treatment of benzodiazepine-refractory SE.


Assuntos
Anticonvulsivantes/uso terapêutico , Colinérgicos/toxicidade , Ketamina/uso terapêutico , Deficiências da Aprendizagem/tratamento farmacológico , Aprendizagem em Labirinto/efeitos dos fármacos , Midazolam/uso terapêutico , Estado Epiléptico , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Deficiências da Aprendizagem/etiologia , Cloreto de Lítio/toxicidade , Masculino , N-Metilescopolamina/toxicidade , Pilocarpina/toxicidade , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Ácido Valproico/uso terapêutico
10.
Epilepsy Behav ; 49: 313-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26198217

RESUMO

In a rat model of status epilepticus (SE) induced by lithium and pilocarpine and refractory to midazolam, deep hypothermia (20 °C for 30 min) reduced EEG power over 50-fold, stopped SE within 12 min, and reduced EEG spikes by 87%. Hypothermia deserves further investigation as a treatment of last resort for refractory SE. This article is part of a Special Issue entitled "Status Epilepticus".


Assuntos
Epilepsia Resistente a Medicamentos/terapia , Hipotermia Induzida/métodos , Estado Epiléptico/terapia , Animais , Convulsivantes , Epilepsia Resistente a Medicamentos/induzido quimicamente , Eletroencefalografia/efeitos dos fármacos , Lítio , Masculino , Midazolam/uso terapêutico , Pilocarpina , Ratos , Ratos Wistar
11.
Neurobiol Dis ; 54: 225-38, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23313318

RESUMO

After 1h of lithium-pilocarpine status epilepticus (SE), immunocytochemical labeling of NMDA receptor NR1 subunits reveals relocation of subunits from the interior to the cell surface of dentate gyrus granule cells and CA3 pyramidal cells. Simultaneously, an increase in NMDA-miniature excitatory postsynaptic currents (mEPSC) as well as an increase in NMDA receptor-mediated tonic currents is observed in hippocampal slices after SE. Mean-variance analysis of NMDA-mEPSCs estimates that the number of functional postsynaptic NMDA receptors per synapse increases 38% during SE, and antagonism by ifenprodil suggests that an increase in the surface representation of NR2B-containing NMDA receptors is responsible for the augmentation of both the phasic and tonic excitatory currents with SE. These results provide a potential mechanism for an enhancement of glutamatergic excitation that maintains SE and may contribute to excitotoxic injury during SE. Therapies that directly antagonize NMDA receptors may be a useful therapeutic strategy during refractory SE.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Estado Epiléptico/metabolismo , Animais , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Técnicas de Patch-Clamp , Transporte Proteico , Ratos , Ratos Wistar , Sinapses/metabolismo
12.
Epilepsia ; 54 Suppl 6: 78-80, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24001081

RESUMO

We used two models of status epilepticus (SE) to study trafficking of N-methyl-d-aspartate (NMDA) receptors. SE is associated with increased surface expression of NR1 subunits of NMDA receptors, and with an increase of NMDA synaptic and extrasynaptic currents suggesting an increase in number of functional NMDA receptors on dentate granule cells. The therapeutic implications of these results are discussed.


Assuntos
N-Metilaspartato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Estado Epiléptico/terapia , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Neurônios/metabolismo , Ratos , Estado Epiléptico/metabolismo , Estado Epiléptico/fisiopatologia
13.
Epilepsia Open ; 8 Suppl 1: S117-S140, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807554

RESUMO

Despite new antiseizure medications, the development of cholinergic-induced refractory status epilepticus (RSE) continues to be a therapeutic challenge as pharmacoresistance to benzodiazepines and other antiseizure medications quickly develops. Studies conducted by Epilepsia. 2005;46:142 demonstrated that the initiation and maintenance of cholinergic-induced RSE are associated with trafficking and inactivation of gamma-aminobutyric acid A receptors (GABAA R) thought to contribute to the development of benzodiazepine pharmacoresistance. In addition, Dr. Wasterlain's laboratory reported that increased N-methyl-d-aspartate receptors (NMDAR) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) contribute to enhanced glutamatergic excitation (Neurobiol Dis. 2013;54:225; Epilepsia. 2013;54:78). Thus, Dr. Wasterlain postulated that targeting both maladaptive responses of reduced inhibition and increased excitation that is associated with cholinergic-induced RSE should improve therapeutic outcome. We currently review studies in several animal models of cholinergic-induced RSE that demonstrate that benzodiazepine monotherapy has reduced efficacy when treatment is delayed and that polytherapy with drugs that include a benzodiazepine (eg midazolam and diazepam) to counter loss of inhibition, concurrent with an NMDA antagonist (eg ketamine) to reduce excitation provide improved efficacy. Improved efficacy with polytherapy against cholinergic-induced seizure is demonstrated by reduction in (1) seizure severity, (2) epileptogenesis, and (3) neurodegeneration compared with monotherapy. Animal models reviewed include pilocarpine-induced seizure in rats, organophosphorus nerve agent (OPNA)-induced seizure in rats, and OPNA-induced seizure in two mouse models: (1) carboxylesterase knockout (Es1-/- ) mice which, similarly to humans, lack plasma carboxylesterase and (2) human acetylcholinesterase knock-in carboxylesterase knockout (KIKO) mice. We also review studies showing that supplementing midazolam and ketamine with a third antiseizure medication (valproate or phenobarbital) that targets a nonbenzodiazepine site rapidly terminates RSE and provides further protection against cholinergic-induced SE. Finally, we review studies on the benefits of simultaneous compared with sequential drug treatments and the clinical implications that lead us to predict improved efficacy of early combination drug therapies. The data generated from seminal rodent studies of efficacious treatment of cholinergic-induced RSE conducted under Dr. Wasterlain's guidance suggest that future clinical trials should treat the inadequate inhibition and temper the excess excitation that characterize RSE and that early combination therapies may provide improved outcome over benzodiazepine monotherapy.


Assuntos
Ketamina , Agentes Neurotóxicos , Estado Epiléptico , Ratos , Camundongos , Humanos , Animais , Midazolam/efeitos adversos , Anticonvulsivantes/uso terapêutico , Agentes Neurotóxicos/efeitos adversos , Ketamina/farmacologia , Ketamina/uso terapêutico , Acetilcolinesterase/uso terapêutico , Compostos Organofosforados/efeitos adversos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Convulsões/tratamento farmacológico , Benzodiazepinas/efeitos adversos , Colinérgicos/efeitos adversos , Receptores de Glutamato/uso terapêutico , Ácido gama-Aminobutírico/efeitos adversos
14.
Epilepsia Open ; 8 Suppl 1: S82-S89, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36939640

RESUMO

OBJECTIVE: In spite of anecdotal reports describing an association between chronic epilepsy and interictal aggressiveness, and of a few studies suggesting that such an association is common in temporal lobe epilepsy, this concept has not been generally accepted by epileptologists. In the course of studies of the long-term consequences of limbic status epilepticus (SE) in juvenile rats, we noticed that experimental animals, unlike littermate controls, could not be housed together because of severe fighting. We now report a study of interictal aggression in those rats. METHODS: Long-term behavioral consequences of lithium/pilocarpine SE were studied 3 months after SE had been induced with lithium and pilocarpine in male Wistar rats at age 28 days. Chronic spontaneous seizures developed in 100% of animals. We tested rats for territorial aggression under the resident-intruder paradigm. We measured the number of episodes of dominance (mounting and pinning), and agonistic behavior (attacks, boxing, and biting). RESULTS: Untreated lithium/pilocarpine SE induced a large increase in aggressive behavior, which involved all aspects of aggression in the resident-intruder paradigm when tested 3 months after SE. The experimental rats were dominant toward the controls, as residents or as intruders, and showed episodes of biting and boxing rarely displayed by controls. They also displayed increased aggressiveness compared with controls when tested against each other. SIGNIFICANCE: This robust model offers an opportunity to better understand the complex relationship between seizures, epilepsy, and aggression, and the role of age, SE vs. recurrent spontaneous seizures, and focal neuronal injury in the long-term behavioral effects of SE.


Assuntos
Epilepsia , Estado Epiléptico , Ratos , Masculino , Animais , Pilocarpina/farmacologia , Lítio/farmacologia , Ratos Wistar , Convulsões , Agressão
15.
Epilepsia ; 52 Suppl 8: 70-1, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21967369

RESUMO

We used a model of severe cholinergic status epilepticus (SE) to study polytherapy aimed at reversing the effects of seizure-induced loss of synaptic GABA(A) receptors and seizure-induced gain of synaptic NMDA receptors. Combinations of a benzodiazepine with ketamine and valproate, or with ketamine and brivaracetam, were more effective and less toxic than benzodiazepine monotherapy in this model of SE.


Assuntos
Anticonvulsivantes/uso terapêutico , Quimioterapia Combinada/métodos , Convulsões/tratamento farmacológico , Estado Epiléptico/tratamento farmacológico , Animais , Modelos Animais de Doenças , Humanos
16.
Epilepsia Open ; 6(4): 757-769, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34657398

RESUMO

OBJECTIVE: Cholinergic-induced status epilepticus (SE) is associated with a loss of synaptic gamma-aminobutyric acid A receptors (GABAA R) and an increase in N-methyl-D-aspartate receptors (NMDAR) and amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) that may contribute to pharmacoresistance when treatment with benzodiazepine antiseizure medication is delayed. The barbiturate phenobarbital enhances inhibitory neurotransmission by binding to a specific site in the GABAA R to increase the open state of the channel, decrease neuronal excitability, and reduce glutamate-induced currents through AMPA/kainate receptors. We hypothesized that phenobarbital as an adjunct to midazolam would augment the amelioration of soman-induced SE and associated neuropathological changes and that further protection would be provided by the addition of an NMDAR antagonist. METHODS: We investigated the efficacy of combining antiseizure medications to include a benzodiazepine and a barbiturate allosteric GABAA R modulator (midazolam and phenobarbital, respectively) to correct loss of inhibition, and ketamine to reduce excitation caused by increased synaptic localization of NMDAR and AMPAR, which are NMDA-dependent. Rats implanted with transmitters to record electroencephalographic (EEG) activity were exposed to soman and treated with atropine sulfate and HI-6 one min after exposure and with antiseizure medication(s) 40 minutes after seizure onset. RESULTS: The triple therapy combination of phenobarbital, midazolam, and ketamine administered at 40 minutes after seizure onset effectively prevented soman-induced epileptogenesis and reduced neurodegeneration. In addition, dual therapy with phenobarbital and midazolam or ketamine was more effective than monotherapy (midazolam or phenobarbital) in reducing cholinergic-induced toxicity. SIGNIFICANCE: Benzodiazepine efficacy is drastically reduced with time after seizure onset and inversely related to seizure duration. To overcome pharmacoresistance in severe benzodiazepine-refractory cholinergic-induced SE, simultaneous drug combination to include drugs that target both the loss of inhibition (eg, midazolam, phenobarbital) and the increased excitatory response (eg, ketamine) is more effective than benzodiazepine or barbiturate monotherapy.


Assuntos
Ketamina , Soman , Animais , Anticonvulsivantes/uso terapêutico , Encéfalo/patologia , Quimioterapia Combinada , Ketamina/farmacologia , Midazolam/farmacologia , Midazolam/uso terapêutico , Fenobarbital/farmacologia , Ratos , Soman/toxicidade
17.
Neuropharmacology ; 185: 108444, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33359073

RESUMO

The initiation and maintenance of cholinergic-induced status epilepticus (SE) are associated with decreased synaptic gamma-aminobutyric acid A receptors (GABAAR) and increased N-methyl-d-aspartate receptors (NMDAR) and amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). We hypothesized that trafficking of synaptic GABAAR and glutamate receptors is maladaptive and contributes to the pharmacoresistance to antiseizure drugs; targeting these components should ameliorate the pathophysiological consequences of refractory SE (RSE). We review studies of rodent models of cholinergic-induced SE, in which we used a benzodiazepine allosteric GABAAR modulator to correct loss of inhibition, concurrent with the NMDA antagonist ketamine to reduce excitation caused by increased synaptic localization of NMDAR and AMPAR, which are NMDAR-dependent. Models included lithium/pilocarpine-induced SE in rats and soman-induced SE in rats and in Es1-/- mice, which similar to humans lack plasma carboxylesterase, and may better model soman toxicity. These model human soman toxicity and are refractory to benzodiazepines administered at 40 min after seizure onset, when enough synaptic GABAAR may not be available to restore inhibition. Ketamine-midazolam combination reduces seizure severity, epileptogenesis, performance deficits and neuropathology following cholinergic-induced SE. Supplementing that treatment with valproate, which targets a non-benzodiazepine site, effectively terminates RSE, providing further benefit against cholinergic-induced SE. The therapeutic index of drug combinations is also reviewed and we show the improved efficacy of simultaneous administration of midazolam, ketamine and valproate compared to sequential drug administration. These data suggest that future clinical trials should treat both the lack of sufficient inhibition and the excess excitation that characterize RSE, and include early combination drug therapies. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.


Assuntos
Anticonvulsivantes/administração & dosagem , Inibidores da Colinesterase/toxicidade , Sistemas de Liberação de Medicamentos/métodos , Receptores de GABA/fisiologia , Receptores de Glutamato/fisiologia , Convulsões/tratamento farmacológico , Animais , Quimioterapia Combinada , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Moduladores GABAérgicos/administração & dosagem , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Resultado do Tratamento
18.
Neurobiol Dis ; 37(2): 394-402, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19879360

RESUMO

The mechanism of status epilepticus-induced neuronal death in the immature brain is not fully understood. In the present study, we examined the contribution of caspases in our lithium-pilocarpine model of status epilepticus in 14 days old rat pups. In CA1, upregulation of caspase-8, but not caspase-9, preceded caspase-3 activation in morphologically necrotic cells. Pretreatment with a pan-caspase inhibitor provided neuroprotection, showing that caspase activation was not an epiphenomenon but contributed to neuronal necrosis. By contrast, upregulation of active caspase-9 and caspase-3, but not caspase-8, was detected in apoptotic dentate gyrus neurons, which were immunoreactive for doublecortin and calbindin-negative, two features of immature neurons. These results suggest that, in cells which are aligned in series as parts of the same excitatory hippocampal circuit, the same seizures induce neuronal death through different mechanisms. The regional level of neuronal maturity may be a determining factor in the execution of a specific death program.


Assuntos
Apoptose/fisiologia , Diferenciação Celular/fisiologia , Epilepsia/enzimologia , Hipocampo/enzimologia , Degeneração Neural/enzimologia , Neurônios/enzimologia , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Antimaníacos/farmacologia , Proteínas Reguladoras de Apoptose/agonistas , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Calbindinas , Inibidores de Caspase , Caspases/metabolismo , Convulsivantes/farmacologia , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Inibidores Enzimáticos/farmacologia , Epilepsia/patologia , Epilepsia/fisiopatologia , Feminino , Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Lítio/farmacologia , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Neurogênese/fisiologia , Neurônios/patologia , Neuropeptídeos/metabolismo , Fármacos Neuroprotetores/farmacologia , Pilocarpina/farmacologia , Ratos , Ratos Wistar , Proteína G de Ligação ao Cálcio S100/metabolismo
19.
Epilepsia ; 51 Suppl 3: 56-60, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20618402

RESUMO

Status epilepticus in the immature brain induces neuronal injury in the hippocampal formation, but the mode and mechanism of death are poorly understood. Our laboratory has recently investigated the role of caspase-3, -8, and -9 in neuronal injury, using a lithium-pilocarpine model of status epilepticus in 2-week-old rat pups. Our results showed that dying neurons in the dentate gyrus and CA1-subiculum area do not share the same mechanism of death. In CA1-subiculum, caspase-8 upregulation preceded caspase-3 activation in morphologically necrotic neurons. The pan-caspase inhibitor Q-VD-OPH reduced CA1 damage, showing that caspases contribute to status epilepticus-induced necrosis. In the dentate gyrus, dying neurons were caspase-9 and -3 immunoreactive and morphologically apoptotic. It is not clear why the same seizures cause different types of cell death in neurons that are connected in series along the same hippocampal circuit, but the apoptotic dentate neurons express doublecortin, and do not express calbindin-D28k, suggesting that their immaturity may be a factor in producing an apoptotic mode of death.


Assuntos
Apoptose , Caspases/fisiologia , Hipocampo/enzimologia , Estado Epiléptico/enzimologia , Animais , Animais Recém-Nascidos , Caspase 3/metabolismo , Caspase 3/fisiologia , Caspase 8/metabolismo , Caspase 8/fisiologia , Caspase 9/metabolismo , Caspase 9/fisiologia , Caspases/metabolismo , Giro Denteado/patologia , Modelos Animais de Doenças , Proteína Duplacortina , Ativação Enzimática/fisiologia , Hipocampo/patologia , Necrose , Neurônios/enzimologia , Neurônios/patologia , Ratos , Transdução de Sinais/fisiologia , Estado Epiléptico/patologia
20.
Neurochem Res ; 35(12): 2193-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21136154

RESUMO

During flurothyl seizures in 4-day-old rats, cortical concentration of ATP, phosphocreatine and glucose fell while lactate rose. Cortical energy use rate more than doubled, while glycolytic rate increased fivefold. Calculation of the cerebral metabolic balance during sustained seizures suggests that energy balance could be maintained in hyperglycemic animals, and would decline slowly in normoglycemia, but would be compromised by concurrent hypoglycemia, hyperthermia or hypoxia. These results suggest that the metabolic challenge imposed on the brain by this model of experimental neonatal seizures is milder than that seen at older ages, but can become critical when associated with other types of metabolic stress.


Assuntos
Animais Recém-Nascidos , Encéfalo/metabolismo , Metabolismo Energético , Animais , Feminino , Gravidez , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA