RESUMO
This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.
RESUMO
AIMS: Serodiagnosis of sheep scab is an established diagnostic method and has become popular in recent years. However, the current diagnostic antigen, Pso o 2, has shown promise as a component of a recombinant vaccine for scab, making it incompatible with discriminating between infected and vaccinated animals (DIVA). Here, we describe the discovery and characterization of a novel Psoroptes ovis immunodiagnostic antigen, P. ovis-Early Immunoreactive Protein-1 (Pso-EIP-1). METHODS AND RESULTS: Pso-EIP-1 is a highly abundant member of a six-gene family with no known homologs, indicating its potential uniqueness to P. ovis. Expression of recombinant Pso-EIP-1 (rPso-EIP-1) required a C-terminal fusion protein for stability and specific IgG immunoreactivity against rPso-EIP-1 was observed in sheep serum from 1 to 2 weeks post-infestation, indicating its highly immunogenic nature. Two of the three in silico-predicted B-cell epitopes of Pso-EIP-1 were confirmed by in vitro epitope mapping and, in a direct comparison by ELISA, Pso-EIP-1 performed to the same levels as Pso o 2 in terms of sensitivity, specificity and ability to diagnose P. ovis on sheep within 2 weeks of infestation. CONCLUSION: Pso-EIP-1 represents a novel diagnostic antigen for sheep scab with comparable levels of sensitivity and specificity to the existing Pso o 2 antigen.
Assuntos
Proteínas de Artrópodes/imunologia , Infestações por Ácaros/veterinária , Psoroptidae/imunologia , Testes Sorológicos/veterinária , Doenças dos Ovinos/diagnóstico , Animais , Imunoglobulina G/sangue , Infestações por Ácaros/diagnóstico , Proteínas Recombinantes de Fusão/imunologia , Sensibilidade e Especificidade , Testes Sorológicos/métodos , OvinosRESUMO
BACKGROUND: Radiotherapy for breast cancer often involves some incidental exposure of the heart to ionizing radiation. The effect of this exposure on the subsequent risk of ischemic heart disease is uncertain. METHODS: We conducted a population-based case-control study of major coronary events (i.e., myocardial infarction, coronary revascularization, or death from ischemic heart disease) in 2168 women who underwent radiotherapy for breast cancer between 1958 and 2001 in Sweden and Denmark; the study included 963 women with major coronary events and 1205 controls. Individual patient information was obtained from hospital records. For each woman, the mean radiation doses to the whole heart and to the left anterior descending coronary artery were estimated from her radiotherapy chart. RESULTS: The overall average of the mean doses to the whole heart was 4.9 Gy (range, 0.03 to 27.72). Rates of major coronary events increased linearly with the mean dose to the heart by 7.4% per gray (95% confidence interval, 2.9 to 14.5; P<0.001), with no apparent threshold. The increase started within the first 5 years after radiotherapy and continued into the third decade after radiotherapy. The proportional increase in the rate of major coronary events per gray was similar in women with and women without cardiac risk factors at the time of radiotherapy. CONCLUSIONS: Exposure of the heart to ionizing radiation during radiotherapy for breast cancer increases the subsequent rate of ischemic heart disease. The increase is proportional to the mean dose to the heart, begins within a few years after exposure, and continues for at least 20 years. Women with preexisting cardiac risk factors have greater absolute increases in risk from radiotherapy than other women. (Funded by Cancer Research UK and others.).
Assuntos
Neoplasias da Mama/radioterapia , Coração/efeitos da radiação , Isquemia Miocárdica/etiologia , Radioterapia Adjuvante/efeitos adversos , Adulto , Idoso , Neoplasias da Mama/complicações , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/cirurgia , Estudos de Casos e Controles , Quimioterapia Adjuvante , Feminino , Humanos , Mastectomia , Pessoa de Meia-Idade , Isquemia Miocárdica/mortalidade , Lesões por Radiação/etiologia , Lesões por Radiação/mortalidade , Dosagem Radioterapêutica , Risco , Fatores de RiscoRESUMO
This work considers a previously overlooked uncertainty present in film dosimetry which results from moderate curvature of films during the scanning process. Small film samples are particularly susceptible to film curling which may be undetected or deemed insignificant. In this study, we consider test cases with controlled induced curvature of film and with film raised horizontally above the scanner plate. We also evaluate the difference in scans of a film irradiated with a typical brachytherapy dose distribution with the film naturally curved and with the film held flat on the scanner. Typical naturally occurring curvature of film at scanning, giving rise to a maximum height 1 to 2 mm above the scan plane, may introduce dose errors of 1% to 4%, and considerably reduce gamma evaluation passing rates when comparing film-measured doses with treatment planning system-calculated dose distributions, a common application of film dosimetry in radiotherapy. The use of a triple-channel dosimetry algorithm appeared to mitigate the error due to film curvature compared to conventional single-channel film dosimetry. The change in pixel value and calibrated reported dose with film curling or height above the scanner plate may be due to variations in illumination characteristics, optical disturbances, or a Callier-type effect. There is a clear requirement for physically flat films at scanning to avoid the introduction of a substantial error source in film dosimetry. Particularly for small film samples, a compression glass plate above the film is recommended to ensure flat-film scanning. This effect has been overlooked to date in the literature.
Assuntos
Braquiterapia/instrumentação , Braquiterapia/métodos , Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/métodos , Imagens de Fantasmas , Controle de Qualidade , Intensificação de Imagem Radiográfica/instrumentação , Braquiterapia/normas , Calibragem , Dosimetria Fotográfica/normas , Humanos , Dosagem RadioterapêuticaRESUMO
The measurement of dose distributions in clinical brachytherapy, for the purpose of quality control, commissioning or dosimetric audit, is challenging and requires development. Radiochromic film dosimetry with a commercial flatbed scanner may be suitable, but careful methodologies are required to control various sources of uncertainty. Triple-channel dosimetry has recently been utilized in external beam radiotherapy to improve the accuracy of film dosimetry, but its use in brachytherapy, with characteristic high maximum doses, steep dose gradients, and small scales, has been less well researched. We investigate the use of advanced film dosimetry techniques for brachytherapy dosimetry, evaluating uncertainties and assessing the mitigation afforded by triple-channel dosimetry. We present results on postirradiation film darkening, lateral scanner effect, film surface perturbation,film active layer thickness, film curling, and examples of the measurement of clinical brachytherapy dose distributions. The lateral scanner effect in brachytherapy film dosimetry can be very significant, up to 23% dose increase at 14 Gy, at ± 9 cm lateral from the scanner axis for simple single-channel dosimetry. Triple-channel dosimetry mitigates the effect, but still limits the useable width of a typical scanner to less than 8 cm at high dose levels to give dose uncertainty to within 1%. Triple-channel dosimetry separates dose and dose-independent signal components, and effectively removes disturbances caused by film thickness variation and surface perturbations in the examples considered in this work. The use of reference dose films scanned simultaneously with brachytherapy test films is recommended to account for scanner variations from calibration conditions. Postirradiation darkening, which is a continual logarithmic function with time, must be taken into account between the reference and test films. Finally, films must be flat when scanned to avoid the Callier-like effects and to provide reliable dosimetric results. We have demonstrated that radiochromic film dosimetry with GAFCHROMIC EBT3 film and a commercial flatbed scanner is a viable method for brachytherapy dose distribution measurement, and uncertainties may be reduced with triple-channel dosimetry and specific film scan and evaluation methodologies.
Assuntos
Braquiterapia/instrumentação , Braquiterapia/métodos , Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/métodos , Imagens de Fantasmas , Braquiterapia/normas , Calibragem , Dosimetria Fotográfica/normas , Humanos , Controle de Qualidade , Dosagem Radioterapêutica , ÁguaRESUMO
Objective.Head and neck cancer patients experience systematic as well as random day to day anatomical changes during fractionated radiotherapy treatment. Modelling the expected systematic anatomical changes could aid in creating treatment plans which are more robust against such changes.Approach.Inter- patient correspondence aligned all patients to a model space. Intra- patient correspondence between each planning CT scan and on treatment cone beam CT scans was obtained using diffeomorphic deformable image registration. The stationary velocity fields were then used to develop B-Spline based patient specific (SM) and population average (AM) models. The models were evaluated geometrically and dosimetrically. A leave-one-out method was used to compare the training and testing accuracy of the models.Main results.Both SMs and AMs were able to capture systematic changes. The average surface distance between the registration propagated contours and the contours generated by the SM was less than 2 mm, showing that the SM are able to capture the anatomical changes which a patient experiences during the course of radiotherapy. The testing accuracy was lower than the training accuracy of the SM, suggesting that the model overfits to the limited data available and therefore, also captures some of the random day to day changes. For most patients the AMs were a better estimate of the anatomical changes than assuming there were no changes, but the AMs could not capture the variability in the anatomical changes seen in all patients. No difference was seen in the training and testing accuracy of the AMs. These observations were highlighted in both the geometric and dosimetric evaluations and comparisons.Significance.In this work, a SM and AM are presented which are able to capture the systematic anatomical changes of some head and neck cancer patients over the course of radiotherapy treatment. The AM is able to capture the overall trend of the population, but there is large patient variability which highlights the need for more complex, capable population models.
Assuntos
Fracionamento da Dose de Radiação , Neoplasias de Cabeça e Pescoço , Planejamento da Radioterapia Assistida por Computador , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Incerteza , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada de Feixe CônicoRESUMO
PURPOSE: Survivors of medulloblastoma face a range of challenges after treatment, involving behavioural, cognitive, language and motor skills. Post-treatment outcomes are associated with structural changes within the brain resulting from both the tumour and the treatment. Diffusion magnetic resonance imaging (MRI) has been used to investigate the microstructure of the brain. In this review, we aim to summarise the literature on diffusion MRI in patients treated for medulloblastoma and discuss future directions on how diffusion imaging can be used to improve patient quality. METHOD: This review summarises the current literature on medulloblastoma in children, focusing on the impact of both the tumour and its treatment on brain microstructure. We review studies where diffusion MRI has been correlated with either treatment characteristics or cognitive outcomes. We discuss the role diffusion MRI has taken in understanding the relationship between microstructural damage and cognitive and behavioural deficits. RESULTS: We identified 35 studies that analysed diffusion MRI changes in patients treated for medulloblastoma. The majority of these studies found significant group differences in measures of brain microstructure between patients and controls, and some of these studies showed associations between microstructure and neurocognitive outcomes, which could be influenced by patient characteristics (e.g. age), treatment, radiation dose and treatment type. CONCLUSIONS: In future, studies would benefit from being able to separate microstructural white matter damage caused by the tumour, tumour-related complications and treatment. Additionally, advanced diffusion modelling methods can be explored to understand and describe microstructural changes to white matter.
Assuntos
Neoplasias Cerebelares , Imagem de Difusão por Ressonância Magnética , Meduloblastoma , Humanos , Meduloblastoma/diagnóstico por imagem , Meduloblastoma/patologia , Criança , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias Cerebelares/diagnóstico por imagem , Neoplasias Cerebelares/complicações , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologiaRESUMO
Objective.To investigate the potential of 3D-printable thermoplastics as tissue-equivalent materials to be used in multimodal radiotherapy end-to-end quality assurance (QA) devices.Approach.Six thermoplastics were investigated: Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS), Polyethylene Terephthalate Glycol (PETG), Polymethyl Methacrylate (PMMA), High Impact Polystyrene (HIPS) and StoneFil. Measurements of mass density (ρ), Relative Electron Density (RED), in a nominal 6 MV photon beam, and Relative Stopping Power (RSP), in a 210 MeV proton pencil-beam, were performed. Average Hounsfield Units (HU) were derived from CTs acquired with two independent scanners. The calibration curves of both scanners were used to predict averageρ,RED and RSP values and compared against the experimental data. Finally, measured data ofρ,RED and RSP was compared against theoretical values estimated for the thermoplastic materials and biological tissues.Main results.Overall, goodρand RSP CT predictions were made; only PMMA and PETG showed differences >5%. The differences between experimental and CT predicted RED values were also <5% for PLA, ABS, PETG and PMMA; for HIPS and StoneFil higher differences were found (6.94% and 9.42/15.34%, respectively). Small HU variations were obtained in the CTs for all materials indicating good uniform density distribution in the samples production. ABS, PLA, PETG and PMMA showed potential equivalency for a variety of soft tissues (adipose tissue, skeletal muscle, brain and lung tissues, differences within 0.19%-8.35% for all properties). StoneFil was the closest substitute to bone, but differences were >10%. Theoretical calculations of all properties agreed with experimental values within 5% difference for most thermoplastics.Significance.Several 3D-printed thermoplastics were promising tissue-equivalent materials to be used in devices for end-to-end multimodal radiotherapy QA and may not require corrections in treatment planning systems' dose calculations. Theoretical calculations showed promise in identifying thermoplastics matching target biological tissues before experiments are performed.
Assuntos
Fótons , Polimetil Metacrilato , Impressão Tridimensional , Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Terapia com Prótons/instrumentação , Polimetil Metacrilato/química , Poliésteres/química , Plásticos , Poliestirenos/química , Calibragem , Garantia da Qualidade dos Cuidados de Saúde , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Teste de Materiais , Resinas Acrílicas , ButadienosRESUMO
Radiomics involves the extraction of information from medical images that are not visible to the human eye. There is evidence that these features can be used for treatment stratification and outcome prediction. However, there is much discussion about the reproducibility of results between different studies. This paper studies the reproducibility of CT texture features used in radiomics, comparing two feature extraction implementations, namely the MATLAB toolkit and Pyradiomics, when applied to independent datasets of CT scans of patients: (i) the open access RIDER dataset containing a set of repeat CT scans taken 15 min apart for 31 patients (RIDER Scan 1 and Scan 2, respectively) treated for lung cancer; and (ii) the open access HN1 dataset containing 137 patients treated for head and neck cancer. Gross tumor volume (GTV), manually outlined by an experienced observer available on both datasets, was used. The 43 common radiomics features available in MATLAB and Pyradiomics were calculated using two intensity-level quantization methods with and without an intensity threshold. Cases were ranked for each feature for all combinations of quantization parameters, and the Spearman's rank coefficient, rs, calculated. Reproducibility was defined when a highly correlated feature in the RIDER dataset also correlated highly in the HN1 dataset, and vice versa. A total of 29 out of the 43 reported stable features were found to be highly reproducible between MATLAB and Pyradiomics implementations, having a consistently high correlation in rank ordering for RIDER Scan 1 and RIDER Scan 2 (rs > 0.8). 18/43 reported features were common in the RIDER and HN1 datasets, suggesting they may be agnostic to disease site. Useful radiomics features should be selected based on reproducibility. This study identified a set of features that meet this requirement and validated the methodology for evaluating reproducibility between datasets.
RESUMO
Quality assurance (QA) for intensity- and volumetric-modulated radiotherapy (IMRT and VMAT) has evolved substantially. In recent years, various commercial 2D and 3D ionization chamber or diode detector arrays have become available, allowing for absolute verification with near real time results, allowing for streamlined QA. However, detector arrays are limited by their resolution, giving rise to concerns about their sensitivity to errors. Understanding the limitations of these devices is therefore critical. In this study, the sensitivity and resolution of the PTW 2D-ARRAY seven29 and OCTAVIUS II phantom combination was comprehensively characterized for use in dynamic sliding window IMRT and RapidArc verification. Measurement comparisons were made between single acquisition and a multiple merged acquisition techniques to improve the effective resolution of the 2D-ARRAY, as well as comparisons against GAFCHROMIC EBT2 film and electronic portal imaging dosimetry (EPID). The sensitivity and resolution of the 2D-ARRAY was tested using two gantry angle 0° modulated test fields. Deliberate multileaf collimator (MLC) errors of 1, 2, and 5 mm and collimator rotation errors were inserted into IMRT and RapidArc plans for pelvis and head & neck sites, to test sensitivity to errors. The radiobiological impact of these errors was assessed to determine the gamma index passing criteria to be used with the 2D-ARRAY to detect clinically relevant errors. For gamma index distributions, it was found that the 2D-ARRAY in single acquisition mode was comparable to multiple acquisition modes, as well as film and EPID. It was found that the commonly used gamma index criteria of 3% dose difference or 3 mm distance to agreement may potentially mask clinically relevant errors. Gamma index criteria of 3%/2 mm with a passing threshold of 98%, or 2%/2 mm with a passing threshold of 95%, were found to be more sensitive. We suggest that the gamma index passing thresholds may be used for guidance, but also should be combined with a visual inspection of the gamma index distribution and calculation of the dose difference to assess whether there may be a clinical impact in failed regions.
Assuntos
Imagens de Fantasmas , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Algoritmos , Calibragem , Simulação por Computador , Humanos , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios XRESUMO
OBJECTIVE: To evaluate the impact of static magnetic field (SMF) presence on the radiation response of pancreatic cancer cells in polyurethane-based highly macro-porous scaffolds in hypoxic (1% O2) and normoxic (21% O2) conditions, towards understanding MR-guided radiotherapy, shedding light on the potential interaction phenomenon between SMF and radiation in a three-dimensional (3D) microenvironment. METHODS: Pancreatic cancer cells (PANC-1, ASPC-1) were seeded into fibronectin-coated highly porous polyethene scaffolds for biomimicry and cultured for 4 weeks in in vitro normoxia (21% O2) followed by a 2-day exposure to either in vitro hypoxia (1% O2) or maintenance in in vitro normoxia (21% O2). The samples were then irradiated with 6 MV photons in the presence or absence of a 1.5 T field. Thereafter, in situ post-radiation monitoring (1 and 7 days post-irradiation treatment) took place via quantification of (i) live dead and (ii) apoptotic profiles. RESULTS: We report: (i) pancreatic ductal adenocarcinoma hypoxia-associated radioprotection, in line with our previous findings, (ii) an enhanced effect of radiation in the presence of SMFin in vitro hypoxia (1% O2) for both short- (1 day) and long-term (7 days) post -radiation analysis and (iii) an enhanced effect of radiation in the presence of SMF in in vitro normoxia (21% O2) for long-term (7 days) post-radiation analysis within a 3D pancreatic cancer model. CONCLUSION: With limited understanding of the potential interaction phenomenon between SMF and radiation, this 3D system allows combination evaluation for a cancer in which the role of radiotherapy is still evolving. ADVANCES IN KNOWLEDGE: This study examined the use of a 3D model to investigate MR-guided radiotherapy in a hypoxic microenvironment, indicating that this could be a useful platform to further understanding of SMF influence on radiation.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Raios X , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/patologia , Hipóxia , Campos Magnéticos , Microambiente TumoralRESUMO
The purpose of the study was to characterize a detection system based on inorganic scintillators and determine its suitability for dosimetry in preclinical radiation research. Dose rate, linearity, and repeatability of the response (among others) were assessed for medium-energy X-ray beam qualities. The response's variation with temperature and beam angle incidence was also evaluated. Absorbed dose quality-dependent calibration coefficients, based on a cross-calibration against air kerma secondary standard ionization chambers, were determined. Relative output factors (ROF) for small, collimated fields (≤10 mm × 10 mm) were measured and compared with Gafchromic film and to a CMOS imaging sensor. Independently of the beam quality, the scintillator signal repeatability was adequate and linear with dose. Compared with EBT3 films and CMOS, ROF was within 5% (except for smaller circular fields). We demonstrated that when the detector is cross-calibrated in the user's beam, it is a useful tool for dosimetry in medium-energy X-rays with small fields delivered by Image-Guided Small Animal Radiotherapy Platforms. It supports the development of procedures for independent "live" dose verification of complex preclinical radiotherapy plans with the possibility to insert the detectors in phantoms.
RESUMO
Organic semiconductors are a promising material candidate for X-ray detection. However, the low atomic number (Z) of organic semiconductors leads to poor X-ray absorption thus restricting their performance. Herein, the authors propose a new strategy for achieving high-sensitivity performance for X-ray detectors based on organic semiconductors modified with high -Z heteroatoms. X-ray detectors are fabricated with p-type organic semiconductors containing selenium heteroatoms (poly(3-hexyl)selenophene (P3HSe)) in blends with an n-type fullerene derivative ([6,6]-Phenyl C71 butyric acid methyl ester (PC70 BM). When characterized under 70, 100, 150, and 220 kVp X-ray radiation, these heteroatom-containing detectors displayed a superior performance in terms of sensitivity up to 600 ± 11 nC Gy-1 cm-2 with respect to the bismuth oxide (Bi2 O3 ) nanoparticle (NP) sensitized organic detectors. Despite the lower Z of selenium compared to the NPs typically used, the authors identify a more efficient generation of electron-hole pairs, better charge transfer, and charge transport characteristics in heteroatom-incorporated detectors that result in this breakthrough detector performance. The authors also demonstrate flexible X-ray detectors that can be curved to a radius as low as 2 mm with low deviation in X-ray response under 100 repeated bending cycles while maintaining an industry-standard ultra-low dark current of 0.03 ± 0.01 pA mm-2 .
RESUMO
Modern conformal radiation therapy using techniques such as modulation, image guidance and motion management have changed the face of radiotherapy today offering superior conformity, efficiency, and reproducibility to clinics worldwide. This review assesses the impact of these advanced radiotherapy techniques on patient toxicity and survival rates reported from January 2017 to September 2020. The main aims are to establish if dosimetric and efficiency gains correlate with improved survival and reduced toxicities and to answer the question 'What is the clinical evidence for the most effective implementation of VMAT?'. Compared with 3DCRT, improvements have been reported with VMAT in prostate, locally advanced cervical carcinoma and various head and neck applications, leading to the shift in technology to VMAT. Other sites such as thoracic neoplasms and nasopharyngeal carcinomas have observed some improvement with VMAT although not in line with improved dosimetric measures, and the burden of toxicity and the incidence of cancer related deaths remain high, signaling the need to further mitigate toxicity and increase survival. As technological advancement continues, large randomised long-term clinical trials are required to determine the way-forward and offer site-specific recommendations. These studies are usually expensive and time consuming, therefore utilising pooled real-world data in a prospective nature can be an alternative solution to comprehensively assess the efficacy of modern radiotherapy techniques.
Assuntos
Radioterapia de Intensidade Modulada , Humanos , Masculino , Órgãos em Risco , Estudos Prospectivos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Reprodutibilidade dos TestesRESUMO
PURPOSE: To improve the quality of radiotherapy head and neck CT images through use of an additional image set reconstructed from the raw data of the primary scan, thus allowing parameters such as reconstruction field-of-view (FOV) and kernel to be optimised without impacting on the images used for treatment planning dose calculations. METHODS: Using a Catphan image quality phantom and a Toshiba Aquilion LB CT scanner, qualitative and quantitative measurements were made for different reconstruction kernels and FOV diameters. The preferred FOV diameter and kernels were selected. Clinical images from six patients were reconstructed using those kernels (FC13, FC41, FC44, FC64) and the chosen FOV, 200 mm. The images were ranked to choose the kernel which gave best image quality for organ delineation. The scanner workflow was adjusted to produce for every scan a second image set using the chosen kernel and FOV. Finally, for 10 patient scans, image quality was compared for the two reconstructed images. RESULTS: The second image set was produced using kernel FC44 and 200 mm FOV. The primary image set using 550 mm FOV and FC13 was unchanged and contours from the second image set merged onto the first. Oncologists reported increased confidence in contouring in all cases using the new procedure. CONCLUSION: Production of a second image set, using a reduced reconstruction FOV and a kernel which optimises contrast and sharpness, significantly improves the quality of head and neck CT images for contouring, and avoids any dose increase.
Assuntos
Cabeça , Tomografia Computadorizada por Raios X , Cabeça/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X/métodosRESUMO
The efficiency of radiotherapy treatment regimes varies from tumour to tumour and from patient to patient but it is generally highly influenced by the tumour microenvironment (TME). The TME can be described as a heterogeneous composition of biological, biophysical, biomechanical and biochemical milieus that influence the tumour survival and its' response to treatment. Preclinical research faces challenges in the replication of these in vivo milieus for predictable treatment response studies. 2D cell culture is a traditional, simplistic and cost-effective approach to culture cells in vitro, however, the nature of the system fails to recapitulate important features of the TME such as structure, cell-cell and cell-matrix interactions. At the same time, the traditional use of animals (Xenografts) in cancer research allows realistic in vivo architecture, however foreign physiology, limited heterogeneity and reduced tumour mutation rates impairs relevance to humans. Furthermore, animal research is very time consuming and costly. Tissue engineering is advancing as a promising biomimetic approach, producing 3D models that capture structural, biophysical, biochemical and biomechanical features, therefore, facilitating more realistic treatment response studies for further clinical application. However, currently, the application of 3D models for radiation response studies is an understudied area of research, especially for pancreatic ductal adenocarcinoma (PDAC), a cancer with a notoriously complex microenvironment. At the same time, specific novel and/or more enhanced radiotherapy tumour-targeting techniques such as MRI-guided radiotherapy and proton therapy are emerging to more effectively target pancreatic cancer cells. However, these emerging technologies may have different biological effectiveness as compared to established photon-based radiotherapy. For example, for MRI-guided radiotherapy, the novel use of static magnetic fields (SMF) during radiation delivery is understudied and not fully understood. Thus, reliable biomimetic platforms to test new radiation delivery strategies are required to more accurately predict in vivo responses. Here, we aim to collate current 3D models for radiation response studies of PDAC, identifying the state of the art and outlines knowledge gaps. Overall, this review paper highlights the need for further research on the use of 3D models for pre-clinical radiotherapy screening including (i) 3D (re)-modeling of the PDAC hypoxic TME to allow for late effects of ionising radiation (ii) the screening of novel radiotherapy approaches and their combinations as well as (iii) a universally accepted 3D-model image quantification method for evaluating TME components in situ that would facilitate accurate post-treatment(s) quantitative comparisons.
Assuntos
Modelos Biológicos , Neoplasias Pancreáticas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , HumanosRESUMO
The isolation of chemical compounds from natural origins for medical application has played an important role in modern medicine with a range of novel treatments having emerged from various natural forms over the past decades. Natural compounds have been exploited for their antioxidant, antimicrobial and antitumor capabilities. Specifically, 60% of today's anticancer drugs originate from natural sources. Moreover, the combination of synthetic and natural treatments has shown applications for (i) reduced side effects, (ii) treatment sensitization and (iii) reduction in treatment resistance. This review aims to collate novel and natural compounds that are being explored for their preclinical anticancer, chemosensitizing and radiosensitizing effects on Pancreatic Ductal Adenocarcinoma (PDAC), which is a lethal disease with current treatments being inefficient and causing serve side effects. Two key points are highlighted by this work: (i) the availability of a range of natural compounds for potentially new therapeutic approaches for PDAC, (ii) potential synergetic impact of natural compounds with advanced chemo- and radio-therapeutic modalities for PDAC.
RESUMO
BACKGROUND AND PURPOSE: Dose delivered during radiotherapy has uncertainty arising from a number of sources including machine calibration, treatment planning and delivery and can impact outcomes. Any systematic uncertainties will impact all patients and can continue for extended periods. The impact on tumour control probability (TCP) of the uncertainties within the radiotherapy calibration process has been assessed. MATERIALS AND METHODS: The linear-quadratic model was used to simulate the TCP from two prostate cancer and a head and neck (H&N) clinical trial. The uncertainty was separated into four components; 1) initial calibration, 2) systematic shift due to output drift, 3) drift during treatment and 4) daily fluctuations. Simulations were performed for each clinical case to model the variation in TCP present at the end of treatment arising from the different components. RESULTS: Overall uncertainty in delivered dose was +/-2.1% (95% confidence interval (CI)), consisting of uncertainty standard deviations of 0.7% in initial calibration, 0.8% due to subsequent calibration shift due to output drift, 0.1% due to drift during treatment, and 0.2% from daily variations. The overall uncertainty of TCP (95% CI) for a population of patients treated on different machines was +/-3%, +/-5%, and +/-3% for simulations based on the two prostate trials and H&N trial respectively. CONCLUSION: The greatest variation in delivered target volume dose arose from calibration shift due to output drift. Careful monitoring of beam output following initial calibration remains vital and may have a significant impact on clinical outcomes.
RESUMO
Tissue engineering is evolving to mimic intricate ecosystems of tumour microenvironments (TME) to more readily map realistic in vivo niches of cancerous tissues. Such advanced cancer tissue models enable more accurate preclinical assessment of treatment strategies. Pancreatic cancer is a dangerous disease with high treatment resistance that is directly associated with a highly complex TME. More specifically, the pancreatic cancer TME includes (i) complex structure and complex extracellular matrix (ECM) protein composition; (ii) diverse cell populations (e.g., stellate cells), cancer associated fibroblasts, endothelial cells, which interact with the cancer cells and promote resistance to treatment and metastasis; (iii) accumulation of high amounts of (ECM), which leads to the creation of a fibrotic/desmoplastic reaction around the tumour; and (iv) heterogeneous environmental gradients such as hypoxia, which result from vessel collapse and stiffness increase in the fibrotic/desmoplastic area of the TME. These unique hallmarks are not effectively recapitulated in traditional preclinical research despite radiotherapeutic resistance being largely connected to them. Herein, we investigate, for the first time, the impact of in vitro hypoxia (5% O2) on the radiotherapy treatment response of pancreatic cancer cells (PANC-1) in a novel polymer (polyurethane) based highly macroporous scaffold that was surface modified with proteins (fibronectin) for ECM mimicry. More specifically, PANC-1 cells were seeded in fibronectin coated macroporous scaffolds and were cultured for four weeks in in vitro normoxia (21% O2), followed by a two day exposure to either in vitro hypoxia (5% O2) or maintenance in in vitro normoxia. Thereafter, in situ post-radiation monitoring (one day, three days, seven days post-irradiation) of the 3D cell cultures took place via quantification of (i) live/dead and apoptotic profiles and (ii) ECM (collagen-I) and HIF-1a secretion by the cancer cells. Our results showed increased post-radiation viability, reduced apoptosis, and increased collagen-I and HIF-1a secretion in in vitro hypoxia compared to normoxic cultures, revealing hypoxia-induced radioprotection. Overall, this study employed a low cost, animal free model enabling (i) the possibility of long-term in vitro hypoxic 3D cell culture for pancreatic cancer, and (ii) in vitro hypoxia associated PDAC radio-protection development. Our novel platform for radiation treatment screening can be used for long-term in vitro post-treatment observations as well as for fractionated radiotherapy treatment.
RESUMO
Infection, the invasion of pathogenic microorganisms and viruses, causes reactive inflammation mediated by endogenous signals, with influx of leucocytes with distinct properties and capable of mounting a cellular or antibody response. Different forms of inflammation may also occur in response to tumours, in allergy and autoimmune disorders. Pneumonia, respiratory tract infection and septic shock for instance can arise as serious complications of the Covid-19 virus. While radiotherapy has been most widely used to control malignant tumours, it has also been used for treatment of non-malignant diseases, including acute and chronic inflammation in situations where anti-inflammatory drugs may be ineffective or contraindicated. The present review examines the history and prospects for low-dose anti-inflammatory radiation treatments, the present interest largely being motivated by the increased incidence of pulmonary disease associated Covid-19 infections. Evidence in support of the suggested efficacy are covered, together with an appraisal of one of the number of potential convenient sources that could complement external beam arrangements.