Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 157(4): 415-426, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35024955

RESUMO

The transcription factor FOXO3 is necessary to preserve cochlear hair cells. Growth factors, including TGF-ß, closely contribute to cochlear hair cell regeneration. In the present study, to investigate the roles of FOXO3 in the ciliogenesis and cell functions of cochlear hair cells, UB/OC-2 temperature-sensitive mouse cochlear precursor hair cells were treated with TGF-ß receptor type 1 inhibitor EW-7197 or EGF receptor inhibitor AG-1478 after transfection with or without siRNA-FOXO3a. GeneChip analysis revealed that treatment with EW-7197 increased Foxo3 genes and decreased genes of Smads. During cell differentiation, treatment with EW-7197 or AG-1478 induced an increase in length of cilia-like structures that were positive for acetylated tubulin and inhibited cell migration. Treatment with EW-7197 also increased cell metabolism measured as mitochondrial basal respiration (oxygen consumption rate). The effects of EW-7197 were stronger than those of AG-1478. Knockdown of FOXO3 prevented the growth of cilia-like structures induced by EW-7197 or AG-1478 and induced cell migration under treatment with EW-7197. No change of the epithelial cell polarity molecule PAR3 was observed with any treatment. Treatment with the antimicrobial agent amikacin prevented the growth of cilia-like structures induced by EW-7197 and induced apoptosis. Pretreatment with the glucocorticoid dexamethasone inhibited the apoptosis induced by amikacin. This in vitro model of mouse cochlear hair cells suggests that FOXO3/TGF-ß signaling plays a crucial role in ciliogenesis and cell functions during differentiation of cochlear hair cells. This model is useful for analysis of the mechanisms of hearing loss and to find therapeutic agents to prevent it.


Assuntos
Amicacina , Fator de Crescimento Transformador beta , Amicacina/farmacologia , Animais , Diferenciação Celular , Células Ciliadas Auditivas , Camundongos , Temperatura
2.
Tissue Barriers ; : 2361976, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825958

RESUMO

The bicellular tight junction molecule cingulin (CGN) binds to microtubules in centrosomes. Furthermore, CGN contributes to the tricellular tight junction (tTJ) proteins lipolysis-stimulated lipoprotein receptor (LSR) and tricellulin (TRIC). CGN as well as LSR decreased during the malignancy of endometrioid endometrial cancer (EEC). Although tTJ protein LSR is involved in the malignancy of some cancers, including EEC, the role of CGN is unknown. In this study, we investigated the roles of CGN with tTJ proteins in human EEC cells by using the CGN-overexpressing EEC cell line Sawano. In 2D cultures, CGN was colocalized with LSR and TRIC at tTJ or at γ-tubulin-positive centrosomes. In immunoprecipitation with CGN antibodies, CGN directly bound to LSR, TRIC, and ß-tubulin. Knockdown of CGN by the siRNA decreased the epithelial barrier and enhanced cell proliferation, migration and invasion, as well as knockdown of LSR. In the Sawano cells cocultured with normal human endometrial stromal cells, knockdown of CGN decreased expression of LSR and TRIC via MAPK and AMPK pathways. In 2.5D cultures, knockdown of CGN induced the formation of abnormal cysts and increased the permeability of FD-4 to the lumen. In 2D and 2.5D cultures, treatment with ß-estradiol with or without EGF or TGF-ß decreased CGN expression and the epithelial permeability barrier and enhanced cell migration, and pretreatment with EW7197+AG1478, U0126 or an anti-IL-6 antibody prevented this. In conclusion, CGN, with tTJ proteins might suppress the malignancy of human EEC and its complex proteins are sensitive to estrogen and growth factors derived from stromal cells.

3.
Cancers (Basel) ; 14(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35681564

RESUMO

BACKGROUND: The p53 family p63 is essential for the proliferation and differentiation of various epithelial basal cells. It is overexpressed in several cancers, including salivary gland neoplasia. Histone deacetylases (HDACs) are thought to play a crucial role in carcinogenesis, and HDAC inhibitors downregulate p63 expression in cancers. METHODS: In the present study, to investigate the roles and regulation of p63 in salivary duct adenocarcinoma (SDC), human SDC cell line A253 was transfected with siRNA-p63 or treated with the HDAC inhibitors trichostatin A (TSA) and quisinostat (JNJ-26481585). RESULTS: In a DNA array, the knockdown of p63 markedly induced mRNAs of the tight junction (TJ) proteins cingulin (CGN) and zonula occuludin-3 (ZO-3). The knockdown of p63 resulted in the recruitment of the TJ proteins, the angulin-1/lipolysis-stimulated lipoprotein receptor (LSR), occludin (OCLN), CGN, and ZO-3 at the membranes, preventing cell proliferation, and leading to increased cell metabolism. Treatment with HDAC inhibitors downregulated the expression of p63, induced TJ structures, recruited the TJ proteins, increased the epithelial barrier function, and prevented cell proliferation and migration. CONCLUSIONS: p63 is not only a diagnostic marker of salivary gland neoplasia, but it also promotes the malignancy. Inhibition of HDAC and signal transduction pathways is, therefore, useful in therapy for p63-positive SDC cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA