Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nucleic Acids Res ; 44(15): 7242-50, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27185888

RESUMO

The intolerance of DNA polymerase δ (Polδ) to incorrect base pairing contributes to its extremely high accuracy during replication, but is believed to inhibit translesion synthesis (TLS). However, chicken DT40 cells lacking the POLD3 subunit of Polδ are deficient in TLS. Previous genetic and biochemical analysis showed that POLD3 may promote lesion bypass by Polδ itself independently of the translesion polymerase Polζ of which POLD3 is also a subunit. To test this hypothesis, we have inactivated Polδ proofreading in pold3 cells. This significantly restored TLS in pold3 mutants, enhancing dA incorporation opposite abasic sites. Purified proofreading-deficient human Polδ holoenzyme performs TLS of abasic sites in vitro much more efficiently than the wild type enzyme, with over 90% of TLS events resulting in dA incorporation. Furthermore, proofreading deficiency enhances the capability of Polδ to continue DNA synthesis over UV lesions both in vivo and in vitro These data support Polδ contributing to TLS in vivo and suggest that the mutagenesis resulting from loss of Polδ proofreading activity may in part be explained by enhanced lesion bypass.


Assuntos
DNA Polimerase III/metabolismo , Replicação do DNA , DNA/biossíntese , DNA/química , Alelos , Linhagem Celular , Dano ao DNA , DNA Polimerase III/química , DNA Polimerase III/genética , DNA Polimerase III/isolamento & purificação , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/isolamento & purificação , Holoenzimas/metabolismo , Humanos , Imunoglobulinas/genética , Raios Ultravioleta
2.
Nucleic Acids Res ; 43(3): 1671-83, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25628356

RESUMO

The replicative DNA polymerase Polδ consists of a catalytic subunit POLD1/p125 and three regulatory subunits POLD2/p50, POLD3/p66 and POLD4/p12. The ortholog of POLD3 in Saccharomyces cerevisiae, Pol32, is required for a significant proportion of spontaneous and UV-induced mutagenesis through its additional role in translesion synthesis (TLS) as a subunit of DNA polymerase ζ. Remarkably, chicken DT40 B lymphocytes deficient in POLD3 are viable and able to replicate undamaged genomic DNA with normal kinetics. Like its counterpart in yeast, POLD3 is required for fully effective TLS, its loss resulting in hypersensitivity to a variety of DNA damaging agents, a diminished ability to maintain replication fork progression after UV irradiation and a significant decrease in abasic site-induced mutagenesis in the immunoglobulin loci. However, these defects appear to be largely independent of Polζ, suggesting that POLD3 makes a significant contribution to TLS independently of Polζ in DT40 cells. Indeed, combining polη, polζ and pold3 mutations results in synthetic lethality. Additionally, we show in vitro that POLD3 promotes extension beyond an abasic by the Polδ holoenzyme suggesting that while POLD3 is not required for normal replication, it may help Polδ to complete abasic site bypass independently of canonical TLS polymerases.


Assuntos
Dano ao DNA , DNA Polimerase III/metabolismo , Reparo do DNA , Animais , Sequência de Bases , Linhagem Celular , Galinhas , DNA Polimerase III/química , Primers do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fase S
3.
Mutagenesis ; 31(1): 69-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26243743

RESUMO

DNA repair pathways play a critical role in maintaining cellular homeostasis by repairing DNA damage induced by endogenous processes and xenobiotics, including environmental chemicals. Induction of DNA damage may lead to genomic instability, disruption of cellular homeostasis and potentially tumours. Isogenic chicken DT40 B-lymphocyte cell lines deficient in DNA repair pathways can be used to identify genotoxic compounds and aid in characterising the nature of the induced DNA damage. As part of the US Tox21 program, we previously optimised several different DT40 isogenic clones on a high-throughput screening platform and confirmed the utility of this approach for detecting genotoxicants by measuring differential cytotoxicity in wild-type and DNA repair-deficient clones following chemical exposure. In the study reported here, we screened the Tox21 10K compound library against two isogenic DNA repair-deficient DT40 cell lines (KU70 (-/-) /RAD54 (-/-) and REV3 (-/-) ) and the wild-type cell line using a cell viability assay that measures intracellular adenosine triphosphate levels. KU70 and RAD54 are genes associated with DNA double-strand break repair processes, and REV3 is associated with translesion DNA synthesis pathways. Active compounds identified in the primary screening included many well-known genotoxicants (e.g. adriamycin, melphalan) and several compounds previously untested for genotoxicity. A subset of compounds was further evaluated by assessing their ability to induce micronuclei and phosphorylated H2AX. Using this comprehensive approach, three compounds with previously undefined genotoxicity-2-oxiranemethanamine, AD-67 and tetraphenylolethane glycidyl ether-were identified as genotoxic. These results demonstrate the utility of this approach for identifying and prioritising compounds that may damage DNA.


Assuntos
Linhagem Celular , Quebras de DNA de Cadeia Dupla , Ensaios de Triagem em Larga Escala/métodos , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Animais , Antígenos Nucleares/genética , Linfócitos B/efeitos dos fármacos , Galinhas , Reparo do DNA , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Autoantígeno Ku , Mutação
4.
Anal Bioanal Chem ; 407(18): 5343-51, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25925857

RESUMO

The endoplasmic reticulum (ER), a multifunctional organelle, plays a central role in cellular signaling, development, and stress response. Dysregulation of ER homeostasis has been associated with human diseases, such as cancer, inflammation, and diabetes. A broad spectrum of stressful stimuli including hypoxia as well as a variety of pharmacological agents can lead to the ER stress response. In this study, we have developed a stable ER stress reporter cell line that stably expresses a ß-lactamase reporter gene under the control of the ER stress response element (ESRE) present in the glucose-regulated protein, 78 kDa (GRP78) gene promoter. This assay has been optimized and miniaturized into a 1536-well plate format. In order to identify clinically used drugs that induce ER stress response, we screened approximately 2800 drugs from the NIH Chemical Genomics Center Pharmaceutical Collection (NPC library) using a quantitative high-throughput screening (qHTS) platform. From this study, we have identified several known ER stress inducers, such as 17-AAG (via HSP90 inhibition), as well as several novel ER stress inducers such as AMI-193 and spiperone. The confirmed drugs were further studied for their effects on the phosphorylation of eukaryotic initiation factor 2α (eIF2α), the X-box-binding protein (XBP1) splicing, and GRP78 gene expression. These results suggest that the ER stress inducers identified from the NPC library using the qHTS approach could shed new lights on the potential therapeutic targets of these drugs.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular , Chaperona BiP do Retículo Endoplasmático , Genes Reporter , Células HeLa , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Elementos de Resposta , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , beta-Lactamases/genética , beta-Lactamases/metabolismo
5.
Proc Natl Acad Sci U S A ; 107(50): 21553-7, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21115814

RESUMO

Fanconi anemia (FA) is a rare genetic disease characterized by congenital defects, bone marrow failure, chromosomal instability, and cancer susceptibility. One hallmark of cells from FA patients is hypersensitivity to interstrand cross-linking agents, such as the chemotherapeutics cisplatin and mitomycin C (MMC). We have recently characterized a FANCD2/FANCI-associated nuclease, KIAA1018/FAN1, the depletion of which sensitizes human cells to these agents. However, as the down-regulation of FAN1 in human cells was mediated by siRNA and thus only transient, we were unable to study the long-term effects of FAN1 loss on chromosomal stability. We now describe the generation of chicken DT40 B cells, in which the FAN1 locus was disrupted by gene targeting. FAN1-null cells are highly sensitive to cisplatin and MMC, but not to ionizing or UV radiation, methyl methanesulfonate, or camptothecin. The cells do not display elevated sister chromatid exchange frequencies, either sporadic or MMC-induced. Interestingly, MMC treatment causes chromosomal instability that is quantitatively, but not qualitatively, comparable to that seen in FA cells. This finding, coupled with evidence showing that DT40 cells deficient in both FAN1 and FANCC, or FAN1 and FANCJ, exhibited increased sensitivity to cisplatin compared with cells lacking only FAN1, suggests that, despite its association with FANCD2/FANCI, FAN1 in DT40 cells participates in the processing of damage induced by interstrand cross-linking-generating agents also independently of the classical FA pathway.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , DNA/efeitos dos fármacos , Exodesoxirribonucleases/metabolismo , Instabilidade Genômica/efeitos dos fármacos , Animais , Linhagem Celular , Galinhas , Dano ao DNA , Reparo do DNA , Endodesoxirribonucleases , Exodesoxirribonucleases/genética , Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Enzimas Multifuncionais
6.
Genes Cells ; 15(12): 1228-39, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21070511

RESUMO

DNA polymerase δ (Polδ) carries out DNA replication with extremely high accuracy. This great fidelity primarily depends on the efficient exclusion of incorrect base pairs from the active site of the polymerase domain. In addition, the 3'-5' exonuclease activity of Polδ further enhances its accuracy by eliminating misincorporated nucleotides. It is believed that these enzymatic properties also inhibit Polδ from inserting nucleotides opposite damaged templates. To test this widely accepted idea, we examined in vitro DNA synthesis by human Polδ enzymes proficient and deficient in the exonuclease activity. We chose the UV-induced lesions cyclobutyl pyrimidine dimer (CPD) and 6-4 pyrimidone photoproduct (6-4 PP) as damaged templates. 6-4 PP represents the most formidable challenge to DNA replication, and no single eukaryotic DNA polymerase has been shown to bypass 6-4 PP in vitro. Unexpectedly, we found that Polδ can perform DNA synthesis across both 6-4 PP and CPD even with a physiological concentration of deoxyribonucleotide triphosphates (dNTPs). DNA synthesis across 6-4 PP was often accompanied by a nucleotide deletion and was highly mutagenic. This unexpected enzymatic property of Polδ in the bypass of UV photoproducts challenges the received notion that the accuracy of Polδ prevents bypassing damaged templates.


Assuntos
DNA Polimerase III/metabolismo , Replicação do DNA , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/efeitos da radiação , Raios Ultravioleta , Humanos , Processos Fotoquímicos/efeitos da radiação , Dímeros de Pirimidina/genética , Moldes Genéticos
7.
Methods Mol Biol ; 1473: 71-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27518625

RESUMO

Visualization of DNA damage response protein recruitment to DNA damage sites enables measurement of the DNA damage. DNA double-strand breaks (DSBs) and blocked replication forks induce the phosphorylation of H2AX at serine 139 (γH2AX), and accumulate γH2AX which can then be detected as foci. The detection of γH2AX foci by immunostaining with antibodies that recognize γH2AX is an indicator of DSBs presence. This chapter describes the measurement of γH2AX immunostaining using a high-content imaging platform in chicken DT40 B-lymphocyte cell lines.


Assuntos
Antineoplásicos/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Doxorrubicina/farmacologia , Histonas/metabolismo , Imuno-Histoquímica/métodos , Melfalan/farmacologia , Animais , Anticorpos/química , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Galinhas , DNA/genética , DNA/metabolismo , Relação Dose-Resposta a Droga , Histonas/genética , Fosforilação/efeitos dos fármacos
8.
Methods Mol Biol ; 1473: 77-85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27518626

RESUMO

Visualization of micronuclei induction by chemicals and drugs enables measurement of possible compound genotoxicity. A loss of entire chromosome or a fragment of chromosome can lead to formation of micronuclei (MNi). The in vitro micronucleus assay can be conducted using nuclear dyes with high-content imaging platforms. This chapter describes the cytochalasin block method of measuring micronuclei in CHO-K1 cell lines.


Assuntos
Cromossomos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Testes para Micronúcleos , Mutagênicos/toxicidade , Animais , Células CHO , Cromossomos/química , Cricetulus , Dano ao DNA , Corantes Fluorescentes/química
10.
PLoS One ; 11(8): e0161486, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27570969

RESUMO

The endoplasmic reticulum (ER) is involved in Ca2+ signaling and protein folding. ER Ca2+ depletion and accumulation of unfolded proteins activate the molecular chaperone GRP78 (glucose-regulated protein 78) which in turn triggers the ER stress response (ERSR) pathway aimed to restore ER homeostasis. Failure to adapt to stress, however, results in apoptosis. We and others have shown that malignant cells are more susceptible to ERSR-induced apoptosis than their normal counterparts, implicating the ERSR as a potential target for cancer therapeutics. Predicated on these findings, we developed an assay that uses a GRP78 biosensor to identify small molecule activators of ERSR in glioma cells. We performed a quantitative high-throughput screen (qHTS) against a collection of ~425,000 compounds and a comprehensive panel of orthogonal secondary assays was formulated for stringent compound validation. We identified novel activators of ERSR, including a compound with a 2,9-diazaspiro[5.5]undecane core, which depletes intracellular Ca2+ stores and induces apoptosis-mediated cell death in several cancer cell lines, including patient-derived and 3D cultures of glioma cells. This study demonstrates that our screening platform enables the identification and profiling of ERSR inducers with cytotoxic activity and advocates for characterization of these compound in in vivo models.


Assuntos
Alcanos/química , Alcanos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glioma/metabolismo , Animais , Apoptose/efeitos dos fármacos , Bioensaio/métodos , Western Blotting , Cálcio/metabolismo , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Células HT29 , Proteínas de Choque Térmico/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos
11.
J Cell Biol ; 189(7): 1117-27, 2010 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-20584917

RESUMO

The chicken DT40 B lymphocyte line diversifies its immunoglobulin (Ig) V genes through translesion DNA synthesis-dependent point mutations (Ig hypermutation) and homologous recombination (HR)-dependent Ig gene conversion. The error-prone biochemical characteristic of the A family DNA polymerases Polnu and Pol led us to explore the role of these polymerases in Ig gene diversification in DT40 cells. Disruption of both polymerases causes a significant decrease in Ig gene conversion events, although POLN(-/-)/POLQ(-/-) cells exhibit no prominent defect in HR-mediated DNA repair, as indicated by no increase in sensitivity to camptothecin. Poleta has also been previously implicated in Ig gene conversion. We show that a POLH(-/-)/POLN(-/-)/POLQ(-/-) triple mutant displays no Ig gene conversion and reduced Ig hypermutation. Together, these data define a role for Polnu and Pol in recombination and suggest that the DNA synthesis associated with Ig gene conversion is accounted for by three specialized DNA polymerases.


Assuntos
DNA Polimerase Dirigida por DNA/genética , Variação Genética , Região Variável de Imunoglobulina/genética , Animais , Linhagem Celular , Galinhas , Reparo do DNA , Conversão Gênica , Linfócitos , Mutação Puntual , Recombinação Genética , Hipermutação Somática de Imunoglobulina , DNA Polimerase teta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA