Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38138517

RESUMO

Obesity is an emerging global health issue with an increasing risk of disease linked to lifestyle choices. Previously, we reported that the hexane extract of Citrus sphaerocarpa (CSHE) suppressed lipid accumulation in differentiated 3T3-L1 adipocytes. In this study, we conducted in vivo experiments to assess whether CSHE suppressed obesity in zebrafish and mouse models. We administered 10 and 20 µg/mL CSHE to obese zebrafish juveniles. CSHE significantly inhibited visceral fat accumulation compared to untreated obese fish. Moreover, the oral administration (100 µg/g body weight/day) of CSHE to high-fat-diet-induced obese mice significantly reduced their body weight, visceral fat volume, and hepatic lipid accumulation. The expression analyses of key regulatory genes involved in lipid metabolism revealed that CSHE upregulated the mRNA expression of lipolysis-related genes in the mouse liver (Pparα and Acox1) and downregulated lipogenesis-related gene (Fasn) expression in epididymal white adipose tissue (eWAT). Fluorescence immunostaining demonstrated the CSHE-mediated enhanced phosphorylation of AKT, AMPK, ACC, and FoxO1, which are crucial factors regulating adipogenesis. CSHE-treated differentiated 3T3L1 adipocytes also exhibited an increased phosphorylation of ACC. Therefore, we propose that CSHE suppresses adipogenesis and enhances lipolysis by regulating the PI3K/AKT/FoxO1 and AMPK/ACC signaling pathways. These findings suggested that CSHE is a promising novel preventive and therapeutic agent for managing obesity.


Assuntos
Fármacos Antiobesidade , Citrus , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Obesos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peixe-Zebra/metabolismo , Adiposidade , Citrus/metabolismo , Fármacos Antiobesidade/farmacologia , Hexanos/farmacologia , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Adipogenia , Peso Corporal , Transdução de Sinais , Lipídeos/farmacologia , Dieta , Dieta Hiperlipídica/efeitos adversos , Células 3T3-L1 , Camundongos Endogâmicos C57BL
2.
Ecotoxicol Environ Saf ; 231: 113211, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35051758

RESUMO

Ultraviolet (UV) rays can be both harmful and beneficial to humans. This study aimed to investigate the toxicity and safety of ultraviolet C (UVC) exposure in living organisms and the corresponding biodefense molecular mechanisms. Zebrafish embryos, at an early developmental stage (5-6 h post-fertilization), were irradiated with increasing UVC dosages using high-efficiency deep-ultraviolet light-emitting diodes (278 nm). Morphological phenotypes including survival rate, hatching rate, heart rate, and malformation rate were evaluated. Compared to un-irradiated controls, all zebrafish embryos exposed to 4.5 mJ/cm2 UVC survived and showed no significant difference in hatching and heart rate. However, 7.5 mJ/cm2 of UVC irradiation caused a significantly decreased survival rate (37.5%) and an increased malformation rate (81.8%). Therefore, 4.5 mJ/cm2 was chosen as the limit dosage that the internal biodefense system of zebrafish embryos can protect against UVC radiation. Transcriptome analysis (RNA sequencing) performed on 3 min and 3 days post-irradiation embryos (4.5 mJ/cm2) revealed the molecular mechanisms underlying the response of zebrafish embryos to irradiation. The embryos quickly responded to UVC-induced stress by activating the p53 signaling pathway. In addition, after 3 days of recuperation, the embryos showed activation of signal transducer and activator of transcription (STAT) signaling pathway. To our knowledge, this is the first study to evaluate the toxicological effects and the molecular mechanism of biodefense in zebrafish embryos upon 278 nm UVC irradiation.


Assuntos
Embrião não Mamífero/efeitos da radiação , Transcriptoma , Raios Ultravioleta , Peixe-Zebra , Animais , Perfilação da Expressão Gênica , Peixe-Zebra/genética
3.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946279

RESUMO

Various natural products (NPs) have been used to treat obesity and related diseases. However, the best way to fight obesity is preventive, with accurate body weight management through exercise, diet, or bioactive NPs to avoid obesity development. We demonstrated that green tea extract (GTE) is an anti-obesity NP using a zebrafish obesity model. Based on a hypothesis that GTE can prevent obesity, the objective of this study was to assess GTE's ability to attenuate obesity development. Juvenile zebrafish were pretreated with GTE for seven days before obesity induction via a high-fat diet; adult zebrafish were pretreated with GTE for two weeks before obesity induction by overfeeding. As a preventive intervention, GTE significantly decreased visceral adipose tissue accumulation in juveniles and ameliorated visceral adiposity and plasma triglyceride levels in adult zebrafish obesity models. RNA sequencing analysis was performed using liver tissues from adult obese zebrafish, with or without GTE administration, to investigate the underlying molecular mechanism. Transcriptome analysis revealed that preventive GTE treatment affects several pathways associated with anti-obesity regulation, including activation of STAT and downregulation of CEBP signaling pathways. In conclusion, GTE could be used as a preventive agent against obesity.


Assuntos
Extratos Vegetais/farmacologia , Chá/química , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Biomarcadores , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra
4.
Molecules ; 25(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878194

RESUMO

In recent decades, zebrafish (Danio rerio) has become a widely used vertebrate animal model for studying development and human diseases. However, studies on skin medication using zebrafish are rare. Here, we developed a novel protocol for percutaneous absorption of molecules via the zebrafish tail skin, by applying a liquid solution directly, or using a filter paper imbibed with a chemical solution (coating). Human skin is capable of absorbing felbinac and loxoprofen sodium hydrate (LSH), but not glycyrrhetinic acid (GA) and terbinafine hydrochloride (TH). To evaluate the possibility and the quality of transdermal absorption in zebrafish, we transdermally administered these four drugs to zebrafish. Pharmacokinetics showed that felbinac was present in the blood of zebrafish subjected to all administration methods. Felbinac blood concentrations peaked at 2 h and disappeared 7 h after administration. GA was not detected following transdermal administrations, but was following exposure. LSH was not found in the circulatory system after transdermal administration, but TH was. A dose-response correlation was observed for felbinac blood concentration. These findings suggest that zebrafish are capable of absorbing drug molecules through their skin. However, the present data cannot demonstrate that zebrafish is a practical model to predict human skin absorption. Further systemic studies are needed to observe the correlations in percutaneous absorption between humans and zebrafish.


Assuntos
Preparações Farmacêuticas/metabolismo , Absorção Cutânea , Administração Cutânea , Animais , Ácido Glicirretínico/administração & dosagem , Ácido Glicirretínico/farmacocinética , Peixe-Zebra
5.
Molecules ; 25(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244349

RESUMO

Ceramides have several well-known biological properties, including anti-pigmentation and anti-melanogenesis, which make them applicable for use in skincare products in cosmetics. However, the efficacy of ceramides is still limited. Dermal or transdermal drug delivery systems can enhance the anti-pigmentation properties of ceramides, although there is currently no systemic evaluation method for the efficacy of these systems. Here we prepared several types of lecithin-based emulsion of maize-derived glucosylceramide, determining PC70-ceramide (phosphatidylcholine-base) to be the safest and most effective anti-pigmentation agent using zebrafish larvae. We also demonstrated the efficacy of PC70 as a drug delivery system by showing that PC70-Nile Red (red fluorescence) promoted Nile Red accumulation in the larval bodies. In addition, PC70-ceramide suppressed melanin in mouse B16 melanoma cells compared to ceramide alone. In conclusion, we developed a lecithin-based dermal delivery method for ceramide using zebrafish larvae with implications for human clinical use.


Assuntos
Ceramidas/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Lecitinas/química , Pigmentação/efeitos dos fármacos , Zea mays/química , Animais , Ceramidas/química , Melanoma Experimental , Camundongos , Pigmentação da Pele/efeitos dos fármacos , Peixe-Zebra
6.
Molecules ; 25(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33322023

RESUMO

(1) Background: The obesity epidemic has been drastically progressing in both children and adults worldwide. Pharmacotherapy is considered necessary for its treatment. However, many anti-obesity drugs have been withdrawn from the market due to their adverse effects. Instead, natural products (NPs) have been studied as a source for drug discovery for obesity, with the goal of limiting the adverse effects. Zebrafish are ideal model animals for in vivo testing of anti-obesity NPs, and disease models of several types of obesity have been developed. However, the evidence for zebrafish as an anti-obesity drug screening model are still limited. (2) Methods: We performed anti-adipogenic testing using the juvenile zebrafish obesogenic test (ZOT) and mouse 3T3-L1 preadipocytes using the focused NP library containing 38 NPs and compared their results. (3) Results: Seven and eleven NPs reduced lipid accumulation in zebrafish visceral fat tissues and mouse adipocytes, respectively. Of these, five NPs suppressed lipid accumulation in both zebrafish and 3T3-L1 adipocytes. We confirmed that these five NPs (globin-digested peptides, green tea extract, red pepper extract, nobiletin, and Moringa leaf powder) exerted anti-obesity effects in diet-induced obese adult zebrafish. (4) Conclusions: ZOT using juvenile fish can be a high-throughput alternative to ZOT using adult zebrafish and can be applied for in vivo screening to discover novel therapeutics for visceral obesity and potentially also other disorders.


Assuntos
Adipogenia/efeitos dos fármacos , Fármacos Antiobesidade/química , Fármacos Antiobesidade/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Camundongos , Peixe-Zebra
7.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901881

RESUMO

BACKGROUND: Down and feather materials have been commonly used and promoted as natural stuffing for warm clothing and bedding. These materials tend to become more allergenic as they become contaminated with microorganisms, in addition to being subjected to several kinds of chemical treatments. The biological or chemical contaminants in these materials pose a major risk to human health, to consumers and manufacturers alike. Here, we report the development of an integrative evaluation method for down and feather materials to assess bacterial contamination and in vivo toxicity. METHODS: To assess bacterial contamination, we quantified 16S ribosomal RNA, performed culture tests, and established a conversion formula. To determine in vivo toxicity, we performed a zebrafish embryo toxicity testing (ZFET). RESULTS: Washing the material appropriately decreases the actual number of bacteria in the down and feather samples; in addition, after washing, 16S rRNA sequencing revealed that the bacterial compositions were similar to those in rinse water. The ZFET results showed that even materials with low bacterial contamination showed high toxicity or high teratogenicity, probably because of the presence of unknown chemical additives. CONCLUSIONS: We established an integrative evaluation method for down and feather safety, based on bacterial contamination with in vivo toxicity testing.


Assuntos
Bioensaio , Plumas , Segurança , Animais , Bactérias/genética , Bioensaio/métodos , Plumas/microbiologia , Humanos , Microbiota , Testes de Toxicidade
8.
Molecules ; 24(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500159

RESUMO

Green tea is a popular beverage that is rich in polyphenolic compounds such as catechins. Its major content, (-)-epigallocatechin-3-gallate, has been shown to have beneficial effects on several diseases including cancer, metabolic syndrome, cardiovascular diseases, and neurodegenerative diseases. The aim of this study was to assess the anti-obesity effects and the underlying molecular mechanisms of green tea extract (GTE) using zebrafish larva and adult obesity models. We administered 100 µg/mL GTE to zebrafish larvae and performed a short-term obesogenic test. GTE significantly decreased the visceral adipose tissue volume induced by a high-fat diet. Oral administration (250 µg/g body weight/day) of GTE to adult diet-induced obese zebrafish also significantly reduced their visceral adipose tissue volume, with a reduction of plasma triglyceride and total cholesterol levels. To investigate the molecular mechanism underlying the GTE effects, we conducted RNA sequencing using liver tissues of adult zebrafish and found that GTE may ameliorate the obese phenotypes via the activation of Wnt/ß-catenin and adenosine monophosphate-activated protein kinase (AMPK) pathway signaling. In addition, the comparative transcriptome analysis revealed that zebrafish and mammals may share a common molecular response to GTE. Our findings suggest that daily consumption of green tea may be beneficial for the prevention and treatment of obesity.


Assuntos
Antioxidantes/farmacologia , Obesidade/dietoterapia , Chá/química , Transcriptoma/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Animais , Antioxidantes/química , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Obesidade/genética , Obesidade/patologia , Proteínas Quinases/genética , RNA-Seq , Transcriptoma/genética , Via de Sinalização Wnt/genética , Peixe-Zebra
9.
Biosci Biotechnol Biochem ; 80(4): 779-85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26967638

RESUMO

Osteoporosis is a debilitating disease caused by decreased bone density. Compounds with anti-osteoclastic activity, such as bisphosphonates, may help in the prevention and treatment of osteoporosis. Herein, we determined the inhibitory effects of ginger hexane extract (GHE) on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in RAW264.7 cells. The results showed that GHE (1) suppressed osteoclast differentiation and the formation of actin rings; (2) inhibited the expression of Nfatc1, a master transcriptional factor for osteoclast differentiation, in a dose-dependent manner (10-20 µg/mL); and (3) inhibited other osteoclastogenesis-related genes, such as Oscar, Dc-stamp, Trap, and Mmp9. These findings suggest that GHE may be used to prevent and treat osteoporosis by inhibiting osteoclast differentiation.


Assuntos
Diferenciação Celular/fisiologia , Hexanos/química , Osteoclastos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ligante RANK/fisiologia , Zingiber officinale/química , Animais , Linhagem Celular , Camundongos , Osteoclastos/citologia , Extratos Vegetais/química
10.
Dis Model Mech ; 17(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38747698

RESUMO

Diabetic nephropathy (DN), as a complication of diabetes, is a substantial healthcare challenge owing to the high risk of morbidity and mortality involved. Although significant progress has been made in understanding the pathogenesis of DN, more efficient models are required to develop new therapeutics. Here, we created a DN model in zebrafish by crossing diabetic Tg(acta1:dnIGF1R-EGFP) and proteinuria-tracing Tg(l-fabp::VDBP-GFP) lines, named zMIR/VDBP. Overfed adult zMIR/VDBP fish developed severe hyperglycemia and proteinuria, which were not observed in wild-type zebrafish. Renal histopathology revealed human DN-like characteristics, such as glomerular basement membrane thickening, foot process effacement and glomerular sclerosis. Glomerular dysfunction was restored upon calorie restriction. RNA sequencing analysis demonstrated that DN zebrafish kidneys exhibited transcriptional patterns similar to those seen in human DN pathogenesis. Notably, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was activated, a phenomenon observed in the early phase of human DN. In addition, metformin improved hyperglycemia and proteinuria in DN zebrafish by modulating Akt phosphorylation. Our results indicate that zMIR/VDBP fish are suitable for elucidating the mechanisms underlying human DN and could be a powerful tool for therapeutic discovery.


Assuntos
Nefropatias Diabéticas , Modelos Animais de Doenças , Hiperglicemia , Proteinúria , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Peixe-Zebra , Animais , Hiperglicemia/complicações , Hiperglicemia/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Animais Geneticamente Modificados , Metformina/farmacologia , Metformina/uso terapêutico , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Ativação Enzimática/efeitos dos fármacos
11.
Food Sci Nutr ; 12(6): 4342-4352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873438

RESUMO

Rhamnan sulphate (RS) is a sulphated polysaccharide found in green algae such as Monostroma nitidum that exhibits various biological functions, including anticoagulant, antitumour, antiviral, and anti-obesity properties. In our previous clinical trial, we demonstrated that RS intake improves constipation. However, no specific bacteria showed a significant (p < .05) change. Notably, these results were obtained after a short RS inoculation period of only 2 weeks. In the present study, to evaluate the long-term effects of RS on the gut microbiota, we orally administered RS to BALB/c mice for 11 weeks, analyzed their blood biochemical data, and performed 16s rRNA-sequencing. Oral administration of RS increased body weight with increased food intake, whereas plasma total cholesterol and fasting plasma glucose levels decreased. RS-fed mice showed lower fasting insulin levels (p < .1) and decreased homeostatic model assessment for insulin resistance (HOMA-IR, p < .0001), suggesting that RS improved insulin resistance. In the feces of mice, the amounts of acetic and propionic acids increased. In the gut microbiota, predictive metagenomic profiling using the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) revealed functional alterations in Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways in RS-fed mice. Corresponding to the blood glucose-lowering effect, the glycolysis and tricarboxylic acid (TCA) cycle pathways were activated. In addition, the Firmicutes/Bacteroides (F/B) ratio, which may be associated with various health outcomes, was also reduced. These results suggest that the blood glucose-lowering effect, improvement in insulin resistance, and lipid-lowering effect of RS may be due to changes in the intestinal microbiota.

12.
Microbiol Immunol ; 57(3): 240-5, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23489084

RESUMO

A quantitative real-time PCR assay to specifically detect and quantify the genus Alcaligenes in samples from the agricultural environment, such as vegetables and farming soils, was developed. The minimum detection sensitivity was 106 fg of pure culture DNA, corresponding to DNA extracted from two cells of Alcaligenes faecalis. To evaluate the detection limit of A. faecalis, serially diluted genomic DNA from this organism was mixed with DNA extracted from soil and vegetables and then a standard curve was constructed. It was found that Alcaligenes species are present in the plant phytosphere at levels 10(2)-10(4) times lower than those in soil. The approach presented here will be useful for tracking or quantifying species of the genus Alcaligenes in the agricultural environment.


Assuntos
Alcaligenes faecalis/isolamento & purificação , Técnicas Bacteriológicas/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Microbiologia do Solo , Verduras/microbiologia , Agricultura , Sensibilidade e Especificidade
13.
Front Nutr ; 10: 1173225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396125

RESUMO

Metabolic syndrome comprises a group of conditions that collectively increase the risk of abdominal obesity, diabetes, atherosclerosis, cardiovascular diseases, and cancer. Gut microbiota is involved in the pathogenesis of metabolic syndrome, and microbial diversity and function are strongly affected by diet. In recent years, epidemiological evidence has shown that the dietary intake of seaweed can prevent metabolic syndrome via gut microbiota modulation. In this review, we summarize the current in vivo studies that have reported the prevention and treatment of metabolic syndrome via seaweed-derived components by regulating the gut microbiota and the production of short-chain fatty acids. Among the surveyed related articles, animal studies revealed that these bioactive components mainly modulate the gut microbiota by reversing the Firmicutes/Bacteroidetes ratio, increasing the relative abundance of beneficial bacteria, such as Bacteroides, Akkermansia, Lactobacillus, or decreasing the abundance of harmful bacteria, such as Lachnospiraceae, Desulfovibrio, Lachnoclostridium. The regulated microbiota is thought to affect host health by improving gut barrier functions, reducing LPS-induced inflammation or oxidative stress, and increasing bile acid production. Furthermore, these compounds increase the production of short-chain fatty acids and influence glucose and lipid metabolism. Thus, the interaction between the gut microbiota and seaweed-derived bioactive components plays a critical regulatory role in human health, and these compounds have the potential to be used for drug development. However, further animal studies and human clinical trials are required to confirm the functional roles and mechanisms of these components in balancing the gut microbiota and managing host health.

14.
Cells ; 12(22)2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37998401

RESUMO

Oral administration of rhamnan sulfate (RS), derived from the seaweed Monostroma nitidum, markedly suppresses inflammatory damage in the vascular endothelium and organs of lipopolysaccharide-treated mice. This study aimed to analyze whether orally administered RS inhibits the development of atherosclerosis, a chronic inflammation of the arteries. ApoE-deficient female mice were fed a normal or high-fat diet (HFD) with or without RS for 12 weeks. Immunohistochemical and mRNA analyses of atherosclerosis-related genes were performed. The effect of RS on the migration of RAW264.7 cells was also examined in vitro. RS administration suppressed the increase in blood total cholesterol and triglyceride levels. In the aorta of HFD-fed mice, RS reduced vascular smooth muscle cell proliferation, macrophage accumulation, and elevation of VCAM-1 and inhibited the reduction of Robo4. Increased mRNA levels of Vcam1, Mmp9, and Srebp1 in atherosclerotic areas of HFD-fed mice were also suppressed with RS. Moreover, RS directly inhibited the migration of RAW264.7 cells in vitro. Thus, in HFD-fed ApoE-deficient mice, oral administration of RS ameliorated abnormal lipid metabolism and reduced vascular endothelial inflammation and hyperpermeability, macrophage infiltration and accumulation, and smooth muscle cell proliferation in the arteries leading to atherosclerosis. These results suggest that RS is an effective functional food for the prevention of atherosclerosis.


Assuntos
Aterosclerose , Clorófitas , Animais , Feminino , Camundongos , Dieta Hiperlipídica , Sulfatos , Aterosclerose/metabolismo , Inflamação/metabolismo , Clorófitas/genética , Administração Oral , Apolipoproteínas E , RNA Mensageiro/uso terapêutico , Receptores de Superfície Celular
15.
Yakugaku Zasshi ; 142(1): 75-84, 2022 Jan 01.
Artigo em Japonês | MEDLINE | ID: mdl-34629350

RESUMO

The spread of COVID-19 has re-affirmed the crucial importance of the pharmaceuticals industry in improving the level of citizens' health and medical care, as well as the industry's importance in terms of contribution to economic growth and tax revenues. Although some time has passed since the importance of industry-academia collaboration was first raised in relation to the creation of innovative new drugs and the continuation of global competitiveness, conflicts between academia and companies have also been highlighted as barriers that hinder efforts to promote the practical realization of academia-initiated seeds. The authors have hypothesized that conflicts between academia and companies can be attributed to the vulnerability of innovation creation environments, including drug discovery, on the academia side, insufficient awareness concerning human resources that will undertake industry-academia operations, and inadequate development of structures. Consequently, we implemented fact-finding investigations in relation to universities and public research institutions in Japan, with the objective of ascertaining the actual status of innovation creation environments, including drug discovery, on the academia side. From the results of these investigations, we will clarify the issues that may present barriers to innovation creation, and consider policies, etc. for the enhancement of innovation creation environments.


Assuntos
Academias e Institutos , COVID-19 , Descoberta de Drogas , Indústria Farmacêutica , Propriedade Intelectual , Colaboração Intersetorial , Humanos , Universidades , Recursos Humanos
16.
J Photochem Photobiol B ; 231: 112448, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35490545

RESUMO

Water disinfection is one of the most important applications of ultraviolet light-emitting diodes (UV-LEDs), though bacterial regrowth remains a serious problem. In this study, we showed that UV-resistant cells, though rare, exist in an Escherichia coli clonal population. The UV-resistance of stationary phase cells was higher than that of exponential phase cells. Regrowth cell populations showed identical UV sensitivity before and after UV treatment, indicating that UV resistance is not acquired genetically, but is generated stochastically. The characteristics of these UV-resistant cells are similar to those of non-heritable antibiotic-resistant cells, termed persisters. The induction of persister formation increased the number of viable cells after UV treatment. The toxin-antitoxin system gene hipA (high persistence A) is a key factor in persister cell formation. We observed that hipA was strongly expressed in the stationary phase cells, while regrowth cells after UV treatment lost hipA expression, suggesting that the regrowth cells lost their persistence. Compared to UV batch radiation, we demonstrated that intermittent UV irradiation, which included the induction of regrowth between UV treatments, significantly reduced the number of viable E. coli cells.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Humanos , Raios Ultravioleta
17.
Sci Total Environ ; 835: 155436, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35461948

RESUMO

The ubiquity of microplastic/nanoplastics (MP/NPs) provides an opportunity for their interaction with other widely spread environmental contaminants. MP/NP and nanoparticles share a similar transport route from sources, production, and disposal. Metal oxide nanoparticles (nMOx) have varied industrial applications, and limited knowledge is available on their interaction with MP/NPs. The present study investigated the effect of NPs (1 mg/L) on the efflux of two nMOx, aluminium oxide nanoparticles (nAl2O3, 1 mg/L) and cerium oxide nanoparticles (nCeO2, 1 mg/L), and their combined toxicity to zebrafish embryos. The results illustrated increased accumulation of aluminium and cerium in the combined exposure group compared to the nMOx alone treatment. The presence of NPs exacerbated the oxidative stress caused by nAl2O3 and nCeO2, as evidenced by an increase in the concentration of reactive oxygen species (ROS), alteration of antioxidants, and lipid peroxidation. The integrated biomarker response (IBRv2) values showed the induction of an antioxidative response in NP + nAl2O3, whereas a decline in IBRv2 values was observed in NP + nCeO2. Our results indicate that NPs aggravated the accumulation of nMOx and their toxicity. The present work highlights that more attention should be paid to the discharge of these contaminants into the natural environment.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Animais , Antioxidantes/metabolismo , Nanopartículas Metálicas/toxicidade , Microplásticos , Nanopartículas/toxicidade , Estresse Oxidativo , Óxidos/toxicidade , Plásticos , Peixe-Zebra/metabolismo
18.
Food Sci Nutr ; 10(4): 1248-1256, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35432980

RESUMO

The zebrafish obesogenic test (ZOT) is a powerful tool for identifying anti-adipogenic compounds for in vivo screening. In our previous study, we found that Moringa oleifera (MO) leaf powder suppressed the accumulation of visceral adipose tissue (VAT) in ZOT. MO demonstrates a wide range of pharmacological effects; however, little is known about its functional constituents. To identify the anti-adipogenic components of MO leaves, we prepared extracts using different extraction methods and tested the obtained extracts and fractions using ZOT. We found that the dichloromethane extract and its hexane:EtOAc = 8:2 fraction reduced VAT accumulation in young zebrafish fed a high-fat diet. We also performed gene expression analysis in the zebrafish VAT and found that CCAAT/enhancer-binding protein beta and CCAAT/enhancer-binding protein delta (associated with early stages of adipogenesis) gene expression was downregulated after fraction 2 administration. We identified a new MO fraction that suppressed VAT accumulation by inhibiting early adipogenesis using the ZOT. Phenotype-driven zebrafish screening is a reasonable strategy for identifying bioactive components in natural products.

19.
Chemosphere ; 262: 128335, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182121

RESUMO

BACKGROUND: Azoles are considered as one of the most efficient fungicides for the treatment of humans, animals, and plant fungal pathogens. They are of significant clinical importance as antifungal drugs and are widely used in personal care products, ultraviolet stabilizers, and in aircraft for its anti-corrosive properties. The prevalence of azole compounds in the natural environment and its accumulation in fish raises questions about its impact on aquatic organisms. OBJECTIVES: The objective of this paper is to review the scientific studies on the effects of azole compounds in fish and to discuss future opportunities for the risk evaluation. METHODS: A systematic literature search was conducted on Web of Science, PubMed, and ScienceDirect to locate peer-reviewed scientific articles on occurrence, environmental fate, and toxicological impact of azole fungicides on fish. RESULTS: Studies included in this review provide ample evidence that azole compounds are not only commonly detected in the natural environment but also cause several detrimental effects on fish. Future studies with environmentally relevant concentrations of azole alone or in combination with other commonly occurring contaminants in a multigenerational study could provide a better understanding. CONCLUSION: Based on current knowledge and studies reporting adverse biological effects of azole on fish, considerable attention is required for better management and effective ecological risk assessment of these emerging contaminants.


Assuntos
Azóis/toxicidade , Peixes , Poluentes Químicos da Água/toxicidade , Animais , Antifúngicos/toxicidade , Azóis/análise , Azóis/farmacocinética , Bioacumulação , Cosméticos/toxicidade , Ecotoxicologia , Peixes/crescimento & desenvolvimento , Fungicidas Industriais/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/farmacocinética
20.
J Hazard Mater ; 405: 123913, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33127190

RESUMO

The co-occurrence of microplastics/nanoplastics (MPs/NPs) with other environmental contaminants has stimulated a focus shift of its skyrocketed research publications (more than 3000 papers during 2016-2020, Web of Science) from ubiquitous occurrence to interactive toxicity. Here, in this review, we provided the current state of knowledge on toxicological interaction of MPs/NPs with co-contaminants (heavy metals, polycyclic aromatic hydrocarbons, pharmaceuticals, pesticides, nanoparticles, organohalogens, plastic additives, and organotins). We discussed the possible interactions (aggregation, adsorption, accumulation, transformation, desorption) that played a role in influencing the toxicity of the mixture. Besides, the type of interactions such as synergistic, antagonistic, potentiating was expounded to get a deeper mechanistic understanding. Despite the wide occurrence and usage, scant studies were available on polypropylene, polyethylene terephthalate. Our analysis shows a dearth of research on common occurring heavy metals (mercury, lead, chromium), phthalates, personal care products. Considerations for environmental factors such as the presence of dissolved organic matter, pH, salinity, temperature, and effects of different colors and types of polymer are recommended.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Adsorção , Microplásticos , Plásticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA