Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(19): 5838-5846, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38661003

RESUMO

Nanostructures of drug carriers play a crucial role in nanomedicine due to their ability to influence drug delivery. There is yet no clear consensus regarding the optimal size and shape (e.g., aspect ratio) of nanoparticles for minimizing macrophage uptake, given the difficulties in controlling the shape and size of nanoparticles while maintaining identical surface properties. Here, we employed graft copolymer self-assembly to prepare polymer micelles with aspect ratios ranging from 1.0 (spherical) to 10.8 (cylindrical) and closely matched interfacial properties. Notably, our findings emphasize that cylindrical micelles with an aspect ratio of 2.4 are the least susceptible to macrophage uptake compared with both their longer counterparts and spherical micelles. This reduced uptake of the short cylindrical micelles results in a 3.3-fold increase in blood circulation time compared with their spherical counterparts. Controlling the aspect ratio of nanoparticles is crucial for improving drug delivery efficacy through better nanoparticle design.


Assuntos
Macrófagos , Micelas , Polímeros , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Animais , Polímeros/química , Camundongos , Portadores de Fármacos/química , Nanopartículas/química , Células RAW 264.7 , Tamanho da Partícula , Sistemas de Liberação de Medicamentos , Propriedades de Superfície
2.
J Biol Chem ; 299(12): 105454, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949217

RESUMO

Phosphate (Pi) is a macronutrient, and Pi homeostasis is essential for life. Pi homeostasis has been intensively studied; however, many questions remain, even at the cellular level. Using Schizosaccharomyces pombe, we sought to better understand cellular Pi homeostasis and showed that three Pi regulators with SPX domains, Xpr1/Spx2, Pqr1, and the VTC complex synergistically contribute to Pi homeostasis to support cell proliferation and survival. SPX domains bind to inositol pyrophosphate and modulate activities of Pi-related proteins. Xpr1 is a plasma membrane protein and its Pi-exporting activity has been demonstrated in metazoan orthologs, but not in fungi. We first found that S. pombe Xpr1 is a Pi exporter, activity of which is regulated and accelerated in the mutants of Pqr1 and the VTC complex. Pqr1 is the ubiquitin ligase downregulating the Pi importers, Pho84 and Pho842. The VTC complex synthesizes polyphosphate in vacuoles. Triple deletion of Xpr1, Pqr1, and Vtc4, the catalytic core of the VTC complex, was nearly lethal in normal medium but survivable at lower [Pi]. All double-deletion mutants of the three genes were viable at normal Pi, but Δpqr1Δxpr1 showed severe viability loss at high [Pi], accompanied by hyper-elevation of cellular total Pi and free Pi. This study suggests that the three cellular processes, restriction of Pi uptake, Pi export, and polyP synthesis, contribute synergistically to cell proliferation through maintenance of Pi homeostasis, leading to the hypothesis that cooperation between Pqr1, Xpr1, and the VTC complex protects the cytoplasm and/or the nucleus from lethal elevation of free Pi.


Assuntos
Fosfatos , Polifosfatos , Animais , Transporte Biológico , Homeostase , Fosfatos/metabolismo , Polifosfatos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
3.
Chemistry ; 29(72): e202302486, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37792507

RESUMO

Boron neutron capture therapy (BNCT) is a promising modality for cancer treatment because of its minimal invasiveness. To maximize the therapeutic benefits of BNCT, the development of efficient platforms for the delivery of boron agents is indispensable. Here, carborane-integrated immunoliposomes were prepared via an exchanging reaction to achieve HER-2-targeted BNCT. The conjugation of an anti-HER-2 antibody to carborane-integrated liposomes successfully endowed these liposomes with targeting properties toward HER-2-overexpressing human ovarian cancer cells (SK-OV3); the resulting BNCT activity toward SK-OV3 cells obtained using the current immunoliposomal system was 14-fold that of the l-BPA/fructose complex, which is a clinically available boron agent. Moreover, the growth of spheroids treated with this system followed by thermal neutron irradiation was significantly suppressed compared with treatment with the l-BPA/fructose complex.


Assuntos
Boranos , Terapia por Captura de Nêutron de Boro , Humanos , Lipossomos , Terapia por Captura de Nêutron de Boro/métodos , Boro , Compostos de Boro , Frutose
4.
Langmuir ; 38(18): 5883-5890, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35471982

RESUMO

Transplantable catalytic reactors have attracted considerable attention as therapeutic biomedical materials. However, existing transplantable reactors such as biocatalytic films are limited by their invasiveness. Here, we report the fabrication of biocatalytic supramolecular hydrogels via self-assembly of amphiphilic glycopeptides. We show that the hydrogels have shear-thinning properties, demonstrating their potential to be administered using a syringe. Enzymes can be loaded into the hydrogels by simply adding enzyme solution, and the enzyme-loaded hydrogels can transform a prodrug into an anticancer drug that inhibits tumor cell growth. This study demonstrates the potential of these biocatalytic hydrogels as injectable therapeutic reactors for enzyme prodrug therapy.


Assuntos
Neoplasias , Pró-Fármacos , Materiais Biocompatíveis , Glicopeptídeos , Humanos , Hidrogéis/química , Pró-Fármacos/farmacologia
5.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563077

RESUMO

Developing photoactivatable theranostic platforms with integrated functionalities of biocompatibility, targeting, imaging contrast, and therapy is a promising approach for cancer diagnosis and therapy. Here, we report a theranostic agent based on a hybrid nanoparticle comprising fullerene nanocrystals and gold nanoparticles (FGNPs) for photoacoustic imaging and photothermal therapy. Compared to gold nanoparticles and fullerene crystals, FGNPs exhibited stronger photoacoustic signals and photothermal heating characteristics by irradiating light with an optimal wavelength. Our studies demonstrated that FGNPs could kill cancer cells due to their photothermal heating characteristics in vitro. Moreover, FGNPs that are accumulated in tumor tissue via the enhanced permeation and retention effect can visualize tumor tissue due to their photoacoustic signal in tumor xenograft model mice. The theranostic agent with FGNPs shows promise for cancer therapy.


Assuntos
Fulerenos , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Animais , Linhagem Celular Tumoral , Fulerenos/química , Ouro/química , Humanos , Nanopartículas Metálicas/uso terapêutico , Camundongos , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Técnicas Fotoacústicas/métodos , Fototerapia/métodos , Terapia Fototérmica , Medicina de Precisão , Nanomedicina Teranóstica/métodos
6.
Angew Chem Int Ed Engl ; 61(38): e202207310, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35705507

RESUMO

Circularly polarized luminescence (CPL) with tunable chirality is currently a challenging issue in the development of supramolecular nanomaterials. We herein report the formation of helical nanoribbons which grow into helical tubes through dynamic helicity inversion. For this, chiral PtII complexes of terpyridine derivatives, namely S-trans-1 and R-trans-1, with respective S- and R-alanine subunits and incorporating trans-double bonds in the alkyl chain were prepared. In DMSO/H2 O (5 : 1 v/v), S-trans-1 initially forms a fibrous self-assembled product, which then undergoes dynamic transformation into helical tubes (left-handed or M-type) through helical ribbons (right-handed or P-type). Interestingly, both helical supramolecular architectures are capable of emitting CPL signals. The metastable helical ribbons show CPL signals (glum =±4.7×10-2 ) at 570 nm. Meanwhile, the nanotubes, which are the thermodynamic products, show intense CPL signals (glum =±5.6×10-2 ) at 610 nm accompanied by helicity inversion. This study provides an efficient way to develop highly dissymmetric CPL nanomaterials by regulating the morphology of metallosupramolecular architectures.

7.
Biomacromolecules ; 22(7): 3099-3106, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34165283

RESUMO

Solute-permeable polymer vesicles are structural compartments for nanoreactors/nanofactories in the context of drug delivery and artificial cells. We previously proposed design guidelines for polymers that form solute-permeable vesicles, yet we did not provide enough experimental verification. In addition, the fact that there is no clear factor for identifying permeable solutes necessitates extensive trial and error. Herein, we report solute-permeable polymer vesicles based on an amphiphilic copolymer, thermoresponsive oligosaccharide-block-poly(N-n-propylglycine). The introduction of a thermoresponsive polymer as a hydrophobic segment into amphiphilic polymers is a viable approach to construct solute-permeable polymer vesicles. We also demonstrate that the polymer vesicles are preferentially permeable to cationic and neutral fluorophores and are hardly permeable to anionic fluorophores due to the electrostatic repulsion between the bilayer and anionic fluorophores. In addition, the permeability of neutral fluorophores increases with the increasing log P value of the fluorophores. Thus, the electrical charge and log P value are important factors for membrane permeability. These findings will help researchers develop advanced nanoreactors based on permeable vesicles for a broad range of fundamental and biomedical applications.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Carboidratos , Permeabilidade , Soluções
8.
Sensors (Basel) ; 21(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34283157

RESUMO

Fluorescent probes can be used to detect various types of asbestos (serpentine and amphibole groups); however, the fiber counting using our previously developed software was not accurate for samples with low fiber concentration. Machine learning-based techniques (e.g., deep learning) for image analysis, particularly Convolutional Neural Networks (CNN), have been widely applied to many areas. The objectives of this study were to (1) create a database of a wide-range asbestos concentration (0-50 fibers/liter) fluorescence microscopy (FM) images in the laboratory; and (2) determine the applicability of the state-of-the-art object detection CNN model, YOLOv4, to accurately detect asbestos. We captured the fluorescence microscopy images containing asbestos and labeled the individual asbestos in the images. We trained the YOLOv4 model with the labeled images using one GTX 1660 Ti Graphics Processing Unit (GPU). Our results demonstrated the exceptional capacity of the YOLOv4 model to learn the fluorescent asbestos morphologies. The mean average precision at a threshold of 0.5 (mAP@0.5) was 96.1% ± 0.4%, using the National Institute for Occupational Safety and Health (NIOSH) fiber counting Method 7400 as a reference method. Compared to our previous counting software (Intec/HU), the YOLOv4 achieved higher accuracy (0.997 vs. 0.979), particularly much higher precision (0.898 vs. 0.418), recall (0.898 vs. 0.780) and F-1 score (0.898 vs. 0.544). In addition, the YOLOv4 performed much better for low fiber concentration samples (<15 fibers/liter) compared to Intec/HU. Therefore, the FM method coupled with YOLOv4 is remarkable in detecting asbestos fibers and differentiating them from other non-asbestos particles.


Assuntos
Amianto , Aprendizado Profundo , Amianto/toxicidade , Asbestos Serpentinas/análise , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Estados Unidos
9.
J Am Chem Soc ; 142(27): 11784-11790, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32506909

RESUMO

Controlling polymer vesicle size is difficult and a major obstacle for their potential use in biomedical applications, such as drug-delivery carriers and nanoreactors. Herein, we report size-tunable polymer vesicles based on self-assembly of a thermoresponsive amphiphilic graft copolymer. Unilamellar polymer vesicles form upon heating chilled polymer solutions, and vesicle size can be tuned in the range of 40-70 nm by adjusting the initial polymer concentration. Notably, the polymer can reversibly switch between a monomer state and a vesicle state in accordance with a cooling/heating cycle, which changes neither the size nor the size distribution of the vesicles. This lack of change suggests that the polymer memorizes a particular vesicle conformation. Given our vesicles' size tunability and structural memory, our research considerably expands the fundamental and practical scope of thermoresponsive amphiphilic graft copolymers and renders amphiphilic graft copolymers useful tools for synthesizing functional self-assembled materials.


Assuntos
Glucanos/química , Polímeros/química , Polissacarídeos/química , Propilenoglicóis/química , Temperatura , Estrutura Molecular
10.
J Am Chem Soc ; 142(1): 154-161, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31766845

RESUMO

Vesicles with molecular permeability have attracted considerable attention as biomedical materials, e.g., as biocatalytic nanoreactors for drug delivery and artificial cells. However, their applications are limited by their low permeability for enzyme substrates. Here, we report the synthesis of oligo(aspartic acid)-b-poly(propylene oxide) polymer vesicle nanoreactors with a negatively charged surface, which are preferentially permeable for cationic and neutral compounds. The permeation of cationic substrates is accelerated by the electrostatic effect, which increases the apparent rate of the enzymatic reaction. Notably, the polymer can be incorporated into a phospholipid membrane, where it acts as a synthetic molecular channel. The obtained results clearly suggest that imparting the vesicle surface with an anionic charge represents a simple and versatile approach to substrate sorting and enhances molecular permeability. This study can thus be expected to open new avenues for the design of vesicles with molecular permeability that may serve as biocatalytic nanoreactors in artificial cells and drug delivery applications.


Assuntos
Lipossomos/química , Nanotecnologia , Peptídeos/química , Polímeros/química , Especificidade por Substrato
11.
Bioconjug Chem ; 31(5): 1259-1267, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32336086

RESUMO

Molecular chaperones play critical roles in biological functions. They are closely involved in the maintenance of cell homeostasis, proper folding of proteins and nucleic acids, and inhibition of irreversible aggregation in denatured proteins. In addition to protein production, molecular chaperone function is widely recognized as important for peptide and protein drug delivery systems. Therefore, much effort has been made in recent decades to develop chaperone-mimetic molecules that have similar structures and biological functions to natural chaperones. These artificial molecular chaperone systems have been demonstrated to facilitate proper protein and nucleic acid folding, in addition to the formation of higher-order structures of synthetic molecules. Furthermore, the functions of these artificial systems show promising clinical applications in drug delivery and biomolecule detection. This topical review focuses on recent advances in the design, construction, characterization, and potential applications of different artificial molecular systems with distinct functional roles, such as the folding of water-soluble and membrane proteins, nucleic acids, and the self-assembly of synthetic molecules. Strategies used in the construction of some artificial molecule chaperone systems for proteins (such as pairs of amphiphilic molecules or self-assembled nanogels) and their applications as biomaterials are described. Specific examples from each design strategy are also highlighted to demonstrate the mechanisms, challenges, and limitations of the different artificial molecular systems. By highlighting the many new developments that have expanded the applications of the artificial chaperones beyond protein folding, this review aims to stimulate further studies on their design and applications.


Assuntos
Materiais Biomiméticos/farmacologia , Chaperonas Moleculares/metabolismo , Ácidos Nucleicos , Animais , Materiais Biomiméticos/síntese química , Desenho de Fármacos , Humanos , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Dobramento de Proteína/efeitos dos fármacos
12.
Macromol Rapid Commun ; 39(23): e1800384, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30062786

RESUMO

Vesicles composed of self-assembled lipids or amphiphilic polymers have significant potential in applications such as delivery of cargo for therapeutics. However, they are fragile under physiological conditions such as inside living cells or the bloodstream, in which a vast number of other molecules are present in high concentrations. This is because vesicles are in dynamic equilibrium between unimers and vesicles. Therefore, the development of more robust vesicles by covalent cross-linking of the shell was focused on. Cross-linked polymer vesicles were prepared by the self-assembly of maltopentaose-b-poly(propylene glycol) followed by the reaction between divinyl sulfone and the hydroxyl group in a maltopentaose unit. It was found that two equivalents of DVS to the polymer is an optimal condition for the cross-linking without changing in size. The bilayer structures were retained after the cross-linking reactions. Importantly, the cross-linked polymer vesicles retained their size and polydispersity even in 50:50 v/v methanol/water solution. This work highlights the potential of the divinyl sulfone shell cross-link as a promising tool for stabilization of glycopolymer vesicles.


Assuntos
Reagentes de Ligações Cruzadas/química , Bicamadas Lipídicas/química , Oligossacarídeos/química , Polietilenoglicóis/química , Reagentes de Ligações Cruzadas/síntese química , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
13.
Biomacromolecules ; 18(12): 3913-3923, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29059529

RESUMO

Nanometer-size gel particles, or nanogels, have potential for delivering therapeutic macromolecules. A cationic surface promotes cellular internalization of nanogels, but undesired electrostatic interactions, such as with blood components, cause instability and toxicities. Poly(ethylene glycol) coating has been used to shield charges, but this decreases delivery efficiency. Technical difficulties in synthesis and controlling molecular weights make it unfeasible to, instead, coat with biodegradable polymers. Our proposed solution is cationized nanogels enzymatically functionalized with branched polysaccharide chains, forming a shell to shield charges and increase stability. Biodegradation of the polysaccharides by an endogenous enzyme would then expose the cationic charges, allowing cellular internalization and cargo delivery. We tested this concept, preparing maltopentaose functionalized cholesteryl poly(l-lysine) nanogel and using tandem enzymatic polymerization with glycogen phosphorylase and glycogen branching enzyme, to add branched amylose moieties, forming a CbAmyPL nanogel. We characterized CbAmyPL nanogels and investigated their suitability as small interfering RNA (siRNA) carriers in murine renal carcinoma (Renca) cells. The nanogels had neutral ζ potential values that became positive after degradation by α-amylase. Foster resonance energy transfer demonstrated that the nanogels formed stable complexes with siRNA, even in the presence of bovine serum albumin and after α-amylase exposure. The nanogels, with or without α-amylase, were not cytotoxic. Complexes of CbAmyPL with siRNA against vascular endothelial growth factor (VEGF), when incubated alone with Renca cells decreased VEGF mRNA levels by only 20%. With α-amylase added, however, VEGF mRNA knockdown by the siRNA/nanogels complexes was 50%. Our findings strongly supported the hypothesis that enzyme-responsive nanogels are promising as a therapeutic siRNA delivery platform.


Assuntos
Nanopartículas/química , Peptídeos/química , Polietilenoglicóis/química , Polietilenoimina/química , Polímeros/química , RNA Interferente Pequeno/química , Animais , Cátions/química , Linhagem Celular Tumoral , Lisina/química , Camundongos , Peso Molecular , Nanogéis , Polissacarídeos/química , Fator A de Crescimento do Endotélio Vascular/química , alfa-Amilases/química
14.
Langmuir ; 32(47): 12283-12289, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27662236

RESUMO

Hydroxypropyl cellulose (HPC) is a fascinating polysaccharide to use in developing a nanogel to be a thermoresponsive building unit for nanogel tectonic materials. Cholesterol-bearing HPC (Ch-HPC) self-assembled to form nanogels through hydrophobic interactions of the cholesteryl groups in water. Ch-HPC nanogels had a lower critical solution temperature in line with that of native HPC. The particle size of Ch-HPC nanogels was reversibly controlled by the temperature and salting-out effect. The thermoresponsive property was also observed in Ch-HPC nanogel-cross-linked macrogels. These results suggest that a Ch-HPC nanogel is an attractive building block for thermoresponsive nanogel tectonic materials.

15.
Ann Occup Hyg ; 60(9): 1104-1115, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27671738

RESUMO

Considering the increasing use of various asbestos substitutes, asbestos risk management in many industries may require accurate techniques for detecting and distinguishing asbestos from non-asbestos fibers. Using fluorescently labeled asbestos-binding proteins, we previously developed a novel method for detection and counting of asbestos fibers under fluorescence microscopy (FM). This method can provide speedy, on-site detection and identification of the asbestos fibers and has higher sensitivity than phase contrast microscopy (PCM). However, current asbestos exposure limits are derived from risk assessments based on epidemiological studies that were conducted using PCM fiber counts. Therefore, the sensitivity of asbestos testing should be maintained at PCM level to properly assess compliance with these limit values. Here, we developed and tested a novel application of FM as a differential counting method that complements PCM analysis and is fully compatible with the PCM-based epidemiological data. In the combined PCM-FM method, the fluorescent asbestos-binding probe is applied prior to filter clearing. The method makes it possible to easily switch between two microscopic techniques while analyzing the same fields of view: PCM is used for counting fibers, and FM for differentiating asbestos from non-asbestos fibers. Using airborne dust samples from demolition sites in Japan, we compared PCM-FM with scanning electron microscopy (SEM)-based differential counting method. Statistical analysis indicated a slight conservative bias of PCM-FM method, combined with relatively high variability across the full range of fiber concentrations in our sample set. Using correlative microscopy, we also evaluated the specificity of FM staining, which is a potential cause of variability between the two methods. The energy-dispersive X-ray analysis indicated that ~95% of fluorescently stained fibers in the demolition site samples were correctly identified as asbestos. While further research is needed to fully clarify the causes of variability between FM- and SEM-based differential counting, PCM-FM could be used for rapid and selective detection of asbestos fibers in field samples.


Assuntos
Asbestos Serpentinas/análise , Microscopia de Fluorescência/métodos , Microscopia de Contraste de Fase/métodos , Poluentes Atmosféricos/análise , Poeira/análise , Humanos , Japão
16.
Biomacromolecules ; 16(9): 2964-71, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26278775

RESUMO

Clinically approved small-molecule magnetic resonance imaging (MRI) contrast agents are all rapidly cleared from the body and offer weak signal enhancement. To avoid repeated administration of contrast agent and improve signal-to-noise ratios, agents with stronger signal enhancement and better retention in tumors are needed. Therefore, we focused on hydrogels because of their excellent water accessibility and biodegradability. Gadolinium (Gd)-chelating cross-linkers were incorporated into self-assembled pullulan nanogels to both impart magnetic properties and to stabilize this material that has been extensively studied for medical applications. We show that these Gd-chelating pullulan nanogels (Gd-CHPOA) have the highest reported relaxivity for any hydrogel-based particles and accumulate in the 4T1 tumors in mice at high levels 4 h after injection. This combination offers high signal enhancement and lasts up to 7 days to delineate the tumor clearly for longer imaging time scales. Importantly, this long-term accumulation does not cause any damage or toxicity in major organs up to three months after injection. Our work highlights the clinical potential of Gd-CHPOA as a tumor-imaging MRI contrast agent, permitting tumor identification and assessment with a high signal-to-background ratio.


Assuntos
Meios de Contraste , Gadolínio , Imageamento por Ressonância Magnética , Nanopartículas/química , Neoplasias Experimentais/diagnóstico por imagem , Polissacarídeos , Animais , Meios de Contraste/química , Meios de Contraste/farmacologia , Gadolínio/química , Gadolínio/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos/química , Polissacarídeos/farmacologia , Radiografia
17.
Environ Monit Assess ; 187(1): 4166, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25467412

RESUMO

An emerging alternative to the commonly used analytical methods for asbestos analysis is fluorescence microscopy (FM), which relies on highly specific asbestos-binding probes to distinguish asbestos from interfering non-asbestos fibers. However, all types of microscopic asbestos analysis require laborious examination of large number of fields of view and are prone to subjective errors and large variability between asbestos counts by different analysts and laboratories. A possible solution to these problems is automated counting of asbestos fibers by image analysis software, which would lower the cost and increase the reliability of asbestos testing. This study seeks to develop a fiber recognition and counting software for FM-based asbestos analysis. We discuss the main features of the developed software and the results of its testing. Software testing showed good correlation between automated and manual counts for the samples with medium and high fiber concentrations. At low fiber concentrations, the automated counts were less accurate, leading us to implement correction mode for automated counts. While the full automation of asbestos analysis would require further improvements in accuracy of fiber identification, the developed software could already assist professional asbestos analysts and record detailed fiber dimensions for the use in epidemiological research.


Assuntos
Amianto/análise , Monitoramento Ambiental/métodos , Substâncias Perigosas/análise , Microscopia de Fluorescência , Software , Laboratórios , Reprodutibilidade dos Testes
18.
Nanoscale ; 16(16): 7908-7915, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38441113

RESUMO

Magnetically responsive photonic crystals of colloidal nanosheets hold great promise for various applications. Here, we systematically investigated the magnetically responsive behavior of a photonic crystal consisting of graphene oxide (GO) nanosheets and water. After applying a 12 T magnetic field perpendicular and parallel to the observation direction, the photonic crystal exhibited a more vivid structural color and no structural color, respectively, based on the magnetic orientation of GO nanosheets. The reflection wavelength can be modulated by varying the GO concentration, and the peak intensity can be basically enhanced by increasing both the time and strength of the magnetic application. To improve color quality, we developed a novel approach of alternately applying a magnetic field to two orthogonal directions, instead of using a rotating magnetic field. Finally, we achieved color switching by changing the direction of applied magnetic fields.

19.
ACS Appl Mater Interfaces ; 15(31): 37837-37844, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37486061

RESUMO

Graphene-oxide (GO) nanosheets, which are oxidized derivatives of graphene, are regarded as promising building blocks for functional soft materials. Especially, thermoresponsive GO nanosheets have been widely employed to develop smart membranes/surfaces, hydrogel actuators, recyclable systems, and biomedical applications. However, current synthetic strategies to generate such thermoresponsive GO nanosheets have exclusively relied on the covalent or non-covalent modification of their surfaces with thermoresponsive polymers, such as poly(N-isopropylacrylamide). To impart a thermoresponsive ability to GO nanosheets themselves, we focused on the countercations of the carboxy and acidic hydroxy groups on the GO nanosheets. In this study, we established a general and reliable method to synthesize GO nanosheets with target countercations and systematically investigated their effects on thermoresponsive behaviors of GO nanosheets. As a result, we discovered that GO nanosheets with Bu4N+ countercations became thermoresponsive in water without the use of any thermoresponsive polymers, inducing a reversible sol-gel transition via their self-assembly and disassembly processes. Owing to the sol-gel transition capability, the resultant dispersion can be used as a direct writing ink for constructing a three-dimensionally designable gel architecture of the GO nanosheets. Our concept of "countercation engineering" can become a new strategy for imparting a stimuli-responsive ability to various charged nanomaterials for the development of next-generation smart materials.

20.
Int J Surg Pathol ; 31(1): 88-91, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35466725

RESUMO

Primary pulmonary myxoid sarcoma is a rare lung sarcoma, mostly involving the central lung and harboring the EWSR1::CREB1 fusion. We report an exceptional case of primary pulmonary myxoid sarcoma arising in the peripheral lung and harboring an EWSR1::ATF1 gene fusion. A 67-year-old man presented with a solid nodule in the right lower lobe, and wedge resection was performed. Microscopically, the tumor consisted of reticular proliferation of uniform mildly atypical spindle cells within abundant myxoid stroma. Immunohistochemically, smooth muscle actin was positive but desmin was negative. Fluorescence in situ hybridization confirmed EWSR1 and ATF1 gene rearrangements. No recurrence was seen for 12 months. Pathological findings and gene rearrangements are important for the diagnosis of primary pulmonary myxoid sarcoma. Complete resection and careful observation are required.


Assuntos
Neoplasias Pulmonares , Sarcoma , Masculino , Humanos , Idoso , Hibridização in Situ Fluorescente , Proteína EWS de Ligação a RNA/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fusão Gênica , Proteínas de Fusão Oncogênica/genética , Sarcoma/diagnóstico , Sarcoma/genética , Sarcoma/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA