Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(10): 105248, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37703992

RESUMO

Rho in filopodia (Rif), a member of the Rho family of small GTPases, induces filopodia formation primarily on the dorsal surface of cells; however, its function remains largely unclear. Here, we show that Rif interacts with Ror1, a receptor for Wnt5a that can also induce dorsal filopodia. Our immunohistochemical analysis revealed a high frequency of coexpression of Ror1 and Rif in lung adenocarcinoma. Lung adenocarcinoma cells cultured on Matrigel established front-rear polarity with massive filopodia on their front surfaces, where Ror1 and Rif were accumulated. Suppression of Ror1 or Rif expression inhibited cell proliferation, survival, and invasion, accompanied by the loss of filopodia and cell polarity in vitro, and prevented tumor growth in vivo. Furthermore, we found that Rif was required to activate Wnt5a-Ror1 signaling at the cell surface leading to phosphorylation of the Wnt signaling pathway hub protein Dvl2, which was further promoted by culturing the cells on Matrigel. Our findings reveal a novel function of Rif in mediating Wnt5a-Ror1-Dvl2 signaling, which is associated with the formation of polarized filopodia on 3D matrices in lung adenocarcinoma cells.

2.
Biochem Biophys Res Commun ; 709: 149829, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38552553

RESUMO

The microRNA-200 (miR-200) family is a potent suppressor of epithelial-to-mesenchymal transition (EMT). While its role as a tumor suppressor has been well documented, recent studies suggested that it can promote cancer progression in several stages. In this study, we investigated whether the miR-200 family members play a role in the acquisition of a hybrid epithelial/mesenchymal (E/M) state, which is reported to be associated with cancer malignancy, in mesenchymal MDA-MB-231 cells. Our results demonstrated that the induction of miR-200c-141, a cluster of the miR-200 family member, can induce the expression of epithelial gene and cell-cell junction while mesenchymal markers are retained. Moreover, induction of miR-200c-141 promoted collective migration accompanied by the formation of F-actin cables anchored by adherens junction. These results suggest that the miR-200 family can induce a hybrid E/M state and endows with the ability of collective cell migration in mesenchymal cancer cells.


Assuntos
Células MDA-MB-231 , MicroRNAs , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Genes Supressores de Tumor , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica
3.
J Biol Chem ; 298(7): 102090, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654143

RESUMO

Invadopodia on cancer cells play crucial roles in tumor invasion and metastasis by degrading and remodeling the surrounding extracellular matrices and driving cell migration in complex 3D environments. Previous studies have indicated that microtubules (MTs) play a crucial role in elongation of invadopodia, but not their formation, probably by regulating delivery of membrane and secretory proteins within invadopodia. However, the identity of the responsible MT-based molecular motors and their regulation has been elusive. Here, we show that KIF1C, a member of kinesin-3 family, is localized to the tips of invadopodia and is required for their elongation and the invasion of cancer cells. We also found that c-Src phosphorylates tyrosine residues within the stalk domain of KIF1C, thereby enhancing its association with tyrosine phosphatase PTPD1, that in turn activates MT-binding ability of KIF1C, probably by relieving the autoinhibitory interaction between its motor and stalk domains. These findings shed new insights into how c-Src signaling is coupled to the MT-dependent dynamic nature of invadopodia and also advance our understanding of the mechanism of KIF1C activation through release of its autoinhibition.


Assuntos
Genes src , Cinesinas , Invasividade Neoplásica , Podossomos , Linhagem Celular Tumoral , Humanos , Cinesinas/genética , Microtúbulos/metabolismo , Fosforilação , Podossomos/metabolismo , Proteínas Tirosina Fosfatases não Receptoras , Tirosina/metabolismo
4.
Genes Cells ; 27(5): 368-375, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35261108

RESUMO

Accumulating evidence demonstrates that bone marrow (BM)-derived mesenchymal stem cells (MSCs) play critical roles in regulating progression of various types of cancer. We have previously shown that Wnt5a-Ror2 signaling in MSCs induces expression of CXCL16, and that CXCL16 secreted from MSCs then binds to its cognate receptor CXCR6 on the surface of an undifferentiated gastric cancer cell line MKN45 cells, eventually leading to proliferation and migration of MKN45 cells. However, it remains unclear about a possible involvement of another (other) cytokine(s) in regulating progression of gastric cancer. Here, we show that CXCL16-CXCR6 signaling is also activated in MSCs through cell-autonomous machinery, leading to upregulated expression of CCL5. We further show that CCR1 and CCR3, receptors of CCL5, are expressed on the surface of MKN45 cells, and that CCL5 secreted from MSCs promotes migration of MKN45 cells presumably via its binding to CCR1/CCR3. These data indicate that cell-autonomous CXCL16-CXCR6 signaling activated in MSCs upregulates expression of CCL5, and that subsequent activation of CCL5-CCR1/3 signaling in MKN45 cells through intercellular machinery can promote migration of MKN45 cells. Collectively, these findings postulate the presence of orchestrated chemokine signaling emanated from MSCs to regulate progression of undifferentiated gastric cancer cells.


Assuntos
Células-Tronco Mesenquimais , Neoplasias Gástricas , Linhagem Celular Tumoral , Quimiocina CXCL16/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo
5.
Cancer Sci ; 111(4): 1254-1265, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32012403

RESUMO

Bone marrow-derived mesenchymal stem or stromal cells (MSC) have been shown to be recruited to various types of tumor tissues, where they interact with tumor cells to promote their proliferation, survival, invasion and metastasis, depending on the type of the tumor. We have previously shown that Ror2 receptor tyrosine kinase and its ligand, Wnt5a, are expressed in MSC, and Wnt5a-Ror2 signaling in MSC induces expression of CXCL16, which, in turn, promotes proliferation of co-cultured MKN45 gastric cancer cells via the CXCL16-CXCR6 axis. However, it remains unclear how CXCL16 regulates proliferation of MKN45 cells. Here, we show that knockdown of CXCL16 in MSC by siRNA suppresses not only proliferation but also migration of co-cultured MKN45 cells. We also show that MSC-derived CXCL16 or recombinant CXCL16 upregulates expression of Ror1 through activation of STAT3 in MKN45 cells, leading to promotion of proliferation and migration of MKN45 cells in vitro. Furthermore, co-injection of MSC with MKN45 cells in nude mice promoted tumor formation in a manner dependent on expression of Ror1 in MKN45 cells, and anti-CXCL16 neutralizing antibody suppressed tumor formation of MKN45 cells co-injected with MSC. These results suggest that CXCL16 produced through Ror2-mediated signaling in MSC within the tumor microenvironment acts on MKN45 cells in a paracrine manner to activate the CXCR6-STAT3 pathway, which, in turn, induces expression of Ror1 in MKN45 cells, thereby promoting tumor progression.


Assuntos
Quimiocina CXCL16/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Fator de Transcrição STAT3/genética , Neoplasias Gástricas/genética , Animais , Anticorpos Neutralizantes/farmacologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Quimiocina CXCL16/antagonistas & inibidores , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Ligação Proteica/genética , Receptores CXCR6/genética , Transdução de Sinais/genética , Neoplasias Gástricas/patologia , Proteína Wnt-5a/genética
6.
Genes Cells ; 24(4): 307-317, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30801848

RESUMO

Mutations in the human receptor tyrosine kinase ROR2 are associated with Robinow syndrome (RRS) and brachydactyly type B1. Amongst others, the shortened limb phenotype associated with RRS is recapitulated in Ror2-/- mutant mice. In contrast, Ror1-/- mutant mice are viable and show no limb phenotype. Ror1-/- ;Ror2-/- double mutants are embryonic lethal, whereas double mutants containing a hypomorphic Ror1 allele (Ror1hyp ) survive up to birth and display a more severe shortened limb phenotype. Both orphan receptors have been shown to act as possible Wnt coreceptors and to mediate the Wnt5a signal. Here, we analyzed genetic interactions between the Wnt ligand, Wnt9a, and Ror2 or Ror1, as Wnt9a has also been implicated in skeletal development. Wnt9a-/- single mutants display a mild shortening of the long bones, whereas these are severely shortened in Ror2-/- mutants. Ror2-/- ;Wnt9a-/- double mutants displayed even more severely shortened long bones, and intermediate phenotypes were observed in compound Ror2;Wnt9a mutants. Long bones were also shorter in Ror1hyp/hyp ;Wnt9a-/- double mutants. In addition, Ror1hyp/hyp ;Wnt9a-/- double mutants displayed a secondary palate cleft phenotype, which was not present in the respective single mutants. Interestingly, 50% of compound mutant pups heterozygous for Ror2 and homozygous mutant for Ror1 also developed a secondary palate cleft phenotype.


Assuntos
Fissura Palatina/genética , Epistasia Genética , Deformidades Congênitas dos Membros/genética , Mutação , Osteogênese/genética , Proteínas Wnt/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase
7.
Cancer Sci ; 110(4): 1306-1316, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30742741

RESUMO

Collective invasion is an important strategy of cancers of epithelial origin, including colorectal cancer (CRC), to infiltrate efficiently into local tissues as collective cell groups. Within the groups, cells at the invasive front, called leader cells, are highly polarized and motile, thereby providing the migratory traction that guides the follower cells. However, its underlying mechanisms remain unclear. We have previously shown that signaling emanating from the receptor tyrosine kinase Ror2 can promote invasion of human osteosarcoma cells and that intraflagellar transport 20 (IFT20) mediates its signaling to regulate Golgi structure and transport. Herein, we investigated the role of Ror2 and IFT20 in collective invasion of CRC cells, where Ror2 expression is either silenced or nonsilenced. We show by cell biological analyses that IFT20 promotes collective invasion of CRC cells, irrespective of expression and function of Ror2. Intraflagellar transport 20 is required for organization of Golgi-associated, stabilized microtubules, oriented toward the direction of invasion in leader cells. Our results also indicate that IFT20 promotes reorientation of the Golgi apparatus toward the front side of leader cells. Live cell imaging of the microtubule plus-end binding protein EB1 revealed that IFT20 is required for continuous polarized microtubule growth in leader cells. These results indicate that IFT20 plays an important role in collective invasion of CRC cells by regulating organization of Golgi-associated, stabilized microtubules and Golgi polarity in leader cells.


Assuntos
Proteínas de Transporte/metabolismo , Complexo de Golgi/metabolismo , Microtúbulos/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia , RNA Interferente Pequeno/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo
8.
Cancer Sci ; 110(10): 3340-3349, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31342590

RESUMO

Aberrant activation of the MET/hepatocyte growth factor (HGF) receptor participates in the malignant behavior of cancer cells, such as invasion-metastasis and resistance to molecular targeted drugs. Many mutations in the MET extracellular region have been reported, but their significance is largely unknown. Here, we report the dysregulation of mutant MET originally found in a lung cancer patient with Val370 to Asp370 (V370D) replacement located in the extracellular SEMA domain. MET-knockout cells were prepared and reconstituted with WT-MET or V370D-MET. HGF stimulation induced MET dimerization and biological responses in cells reconstituted with WT-MET, but HGF did not induce MET dimerization and failed to induce biological responses in V370D-MET cells. The V370D mutation abrogated HGF-dependent drug resistance of lung cancer cells to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI). Compared with WT-MET cells, V370D-MET cells showed different activation patterns in receptor tyrosine kinases upon exposure to survival/growth-stressed conditions. Surface plasmon resonance analysis indicated that affinity between the extracellular region of V370D-MET and HGF was reduced compared with that for WT-MET. Further analysis of the association between V370D-MET and the separate domains of HGF indicated that the SP domain of HGF was unchanged, but its association with the NK4 domain of HGF was mostly lost in V370D-MET. These results indicate that the V370D mutation in the MET receptor impairs the functional association with HGF and is therefore a loss-of-function mutation. This mutation may change the dependence of cancer cell growth/survival on signaling molecules, which may promote cancer cell characteristics under certain conditions.


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Neoplasias Pulmonares/genética , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas c-met/química , Proteínas Proto-Oncogênicas c-met/genética , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Resistencia a Medicamentos Antineoplásicos , Técnicas de Inativação de Genes , Humanos , Mutação com Perda de Função , Domínios Proteicos , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica , Proteínas Proto-Oncogênicas c-met/metabolismo , Ativação Transcricional
9.
Genes Cells ; 23(7): 606-613, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29845703

RESUMO

Malignant pleural mesothelioma (MPM) is a highly aggressive tumor with poor prognosis and closely related to exposure to asbestos. MPM is a heterogeneous tumor with three main histological subtypes, epithelioid, sarcomatoid, and biphasic types, among which sarcomatoid type shows the poorest prognosis. The Ror-family of receptor tyrosine kinases, Ror1 and Ror2, is expressed in various types of tumor cells at higher levels and affects their aggressiveness. However, it is currently unknown whether they are expressed in and involved in aggressiveness of MPM. Here, we show that Ror1 and Ror2 are expressed in clinical specimens and cell lines of MPM with different histological features. Studies using MPM cell lines indicate that expression of Ror2 is associated tightly with high invasiveness of MPM cells, whereas Ror1 can contribute to their invasion in the absence of Ror2. However, both Ror1 and Ror2 promote proliferation of MPM cells. We also show that promoted invasion and proliferation of MPM cells by Ror signaling can be mediated by the Rho-family of small GTPases, Rac1, and Cdc42. These findings elucidate the critical role of Ror signaling in promoting invasion and proliferation of MPM cells.


Assuntos
Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/genética , Mesotelioma/genética , Mesotelioma Maligno , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/fisiologia , Transdução de Sinais
10.
Proc Natl Acad Sci U S A ; 113(21): 5993-8, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27162350

RESUMO

Hair cells of the inner ear, the mechanosensory receptors, convert sound waves into neural signals that are passed to the brain via the auditory nerve. Little is known about the molecular mechanisms that govern the development of hair cell-neuronal connections. We ascertained a family with autosomal recessive deafness associated with a common cavity inner ear malformation and auditory neuropathy. Via whole-exome sequencing, we identified a variant (c.2207G>C, p.R736T) in ROR1 (receptor tyrosine kinase-like orphan receptor 1), cosegregating with deafness in the family and absent in ethnicity-matched controls. ROR1 is a tyrosine kinase-like receptor localized at the plasma membrane. At the cellular level, the mutation prevents the protein from reaching the cellular membrane. In the presence of WNT5A, a known ROR1 ligand, the mutated ROR1 fails to activate NF-κB. Ror1 is expressed in the inner ear during development at embryonic and postnatal stages. We demonstrate that Ror1 mutant mice are severely deaf, with preserved otoacoustic emissions. Anatomically, mutant mice display malformed cochleae. Axons of spiral ganglion neurons show fasciculation defects. Type I neurons show impaired synapses with inner hair cells, and type II neurons display aberrant projections through the cochlear sensory epithelium. We conclude that Ror1 is crucial for spiral ganglion neurons to innervate auditory hair cells. Impairment of ROR1 function largely affects development of the inner ear and hearing in humans and mice.


Assuntos
Células Ciliadas Auditivas/metabolismo , Perda Auditiva Neurossensorial/metabolismo , Mutação , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Linhagem Celular , Células Ciliadas Auditivas/patologia , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Humanos , Camundongos , Camundongos Mutantes , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Gânglio Espiral da Cóclea/patologia , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
11.
Clin Calcium ; 29(3): 291-297, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-30814373

RESUMO

Non-canonical Wnt signaling, including planar cell polarity and Ca2+ pathways, plays crucial roles in developmental processes, including morphogenesis and tissue-/organo-genesis, in animals. Ror2 receptor tyrosine kinase mediates non-canonical Wnt signaling by acting as a receptor for Wnt5a, which also inhibits canonical Wnt signaling. Dysregulation of Wnt5a-Ror2 signaling causes a wide range of developmental defects and cancer progression. Recently, Ror2-mediated non-canonical Wnt signaling has also been shown to induce formation of filopodia that facilitates transport of Wnt to neighboring cells, thereby activating canonical Wnt signaling there.


Assuntos
Cálcio/metabolismo , Polaridade Celular , Proteínas Wnt , Via de Sinalização Wnt , Proteína Wnt-5a/metabolismo , Animais , Humanos
12.
Cell Struct Funct ; 42(2): 159-167, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29070775

RESUMO

The submandibular gland (SMG) is one of the major salivary glands that play important roles for variety of physiological functions, such as digestion of foods, prevention of infection, and lubrication of the mouth. Dysfunction of the SMG, often associated with a salivary inflammation, adversely influences a person's quality of life. However, the mechanism underlying inflammation-driven dysfunction of the SMG is largely unknown. Here, we used a mouse model in which the main excretory duct of the SMG is ligated unilaterally to induce inflammation of the gland and examined the expression of Wnt5a, Ror1 and Ror2 genes, encoding Wnt5a ligand and its cognate receptors, which have been implicated in tissue damage or inflammatory responses in variety of tissues. We show that expression levels of Ror1, Ror2, and Wnt5a are increased in the ligated SMG undergoing interstitial fibrosis, which is accompanied by robust expression of fibrosis-associated genes, such as TGF-ß1, TNF-α, IL-1ß, and MMP-2. Increased immunostaining signal of Ror2 was detected in the fibrotic tissues with abundant accumulation of fibroblasts and collagen fibers in the ligated SMG, suggesting that Ror2-mediated signaling might be activated in response to tissue damage and associated with progression of fibrosis in the SMG.Key words: submandibular gland, Ror2, Wnt5a, fibrosis, inflammation.


Assuntos
Fibrose/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Glândula Submandibular/metabolismo , Animais , Modelos Animais de Doenças , Fibrose/metabolismo , Fibrose/patologia , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/análise , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Glândula Submandibular/patologia
13.
Genes Cells ; 21(4): 325-34, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26840931

RESUMO

Spatiotemporally regulated interaction between the metanephric mesenchyme (MM) and Wolffian duct (WD) is essential for the induction of a single ureteric bud (UB). The MM then interacts with the tip of the UB to induce outgrowth and branching of the UB, which in turn promotes growth of the adjacent MM. The Ror family receptor tyrosine kinases, Ror1 and Ror2, have been shown to act as receptors for Wnt5a to mediate noncanonical Wnt signaling. Previous studies have shown that Ror2-mutant mice exhibit ectopic formation of the UB, due to abnormal juxtaposition of the MM to the WD. We show here that both Ror1 and Ror2 are expressed in the mesenchyme between the MM and WD during UB formation. Although Ror1-mutant mice show no apparent defects in UB formation, Ror1;Ror2-double-mutant mice exhibit either defects in UB outgrowth and branching morphogenesis, associated with the loss of the MM from the UB domain, or ectopic formation of the UB. We also show genetic interactions between Ror1 and Wnt5a during UB formation. These findings suggest that Wnt5a-Ror1/Ror2 signaling regulates cooperatively the formation of the MM at the proper position to ensure normal development of the UB.


Assuntos
Rim/embriologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais , Ureter/embriologia , Animais , Embrião de Mamíferos/metabolismo , Rim/metabolismo , Mesoderma/metabolismo , Camundongos , Mutação , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Ureter/metabolismo
14.
Cancer Sci ; 107(3): 290-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26708384

RESUMO

Wnt5a-Ror2 signaling has been shown to play important roles in promoting aggressiveness of various cancer cells in a cell-autonomous manner. However, little is known about its function in cancer-associated stromal cells, including mesenchymal stem cells (MSCs). Thus, we examined the role of Wnt5a-Ror2 signaling in bone marrow-derived MSCs in regulating proliferation of undifferentiated gastric cancer cells. Coculture of a gastric cancer cell line, MKN45, with MSCs either directly or indirectly promotes proliferation of MKN45 cells, and suppressed expression of Ror2 in MSCs prior to coculture inhibits enhanced proliferation of MKN45 cells. In addition, conditioned media from MSCs, treated with control siRNA, but not siRNAs against Ror2, can enhance proliferation of MKN45 cells. Interestingly, it was found that expression of CXCL16 in MSCs is augmented by Wnt5a-Ror2 signaling, and that recombinant chemokine (C-X-C motif) ligand (CXCL)16 protein can enhance proliferation of MKN45 cells in the absence of MSCs. In fact, suppressed expression of CXCL16 in MSCs or an addition of a neutralizing antibody against CXCL16 fails to promote proliferation of MKN45 cells in either direct or indirect coculture with MSCs. Importantly, we show that MKN45 cells express chemokine (C-X-C motif) receptor (CXCR)6, a receptor for CXCL16, and that suppressed expression of CXCR6 in MKN45 cells results in a failure of its enhanced proliferation in either direct or indirect coculture with MSCs. These findings indicate that Wnt5a-Ror2 signaling enhances expression of CXCL16 in MSCs and, as a result, enhanced secretion of CXCL16 from MSCs might act on CXCR6 expressed on MKN45, leading to the promotion of its proliferation.


Assuntos
Quimiocinas CXC/fisiologia , Células-Tronco Mesenquimais/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores Depuradores/fisiologia , Receptores Virais/metabolismo , Neoplasias Gástricas/metabolismo , Proteínas Wnt/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quimiocina CXCL16 , Técnicas de Cocultura , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores CXCR6 , Transdução de Sinais , Neoplasias Gástricas/patologia , Ativação Transcricional , Proteína Wnt-5a
15.
J Biol Chem ; 289(38): 26302-26313, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25100728

RESUMO

Cofilin plays an essential role in cell migration and morphogenesis by enhancing actin filament dynamics via its actin filament-severing activity. Slingshot-1 (SSH1) is a protein phosphatase that plays a crucial role in regulating actin dynamics by dephosphorylating and reactivating cofilin. In this study, we identified insulin receptor substrate (IRS)-4 as a novel SSH1-binding protein. Co-precipitation assays revealed the direct endogenous binding of IRS4 to SSH1. IRS4, but not IRS1 or IRS2, was bound to SSH1. IRS4 was bound to SSH1 mainly through the unique region (amino acids 335-400) adjacent to the C terminus of the phosphotyrosine-binding domain of IRS4. The N-terminal A, B, and phosphatase domains of SSH1 were bound to IRS4 independently. Whereas in vitro phosphatase assays revealed that IRS4 does not directly affect the cofilin phosphatase activity of SSH1, knockdown of IRS4 increased cofilin phosphorylation in cultured cells. Knockdown of IRS4 decreased phosphatidylinositol 3-kinase (PI3K) activity, and treatment with an inhibitor of PI3K increased cofilin phosphorylation. Akt preferentially phosphorylated SSH1 at Thr-826, but expression of a non-phosphorylatable T826A mutant of SSH1 did not affect insulin-induced cofilin dephosphorylation, and an inhibitor of Akt did not increase cofilin phosphorylation. These results suggest that IRS4 promotes cofilin dephosphorylation through sequential activation of PI3K and SSH1 but not through Akt. In addition, IRS4 co-localized with SSH1 in F-actin-rich membrane protrusions in insulin-stimulated cells, which suggests that the association of IRS4 with SSH1 contributes to localized activation of cofilin in membrane protrusions.


Assuntos
Cofilina 1/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Processamento de Proteína Pós-Traducional , Extensões da Superfície Celular/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Insulina/fisiologia , Proteínas Substratos do Receptor de Insulina/química , Proteínas Substratos do Receptor de Insulina/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas Fosfatases/química , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
16.
Genes Cells ; 19(4): 287-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24475942

RESUMO

Activation of Wnt/ß-catenin signal in muscle satellite cells (mSCs) of aged mice during myogenic differentiation has been appreciated as an important age-related feature of the skeletal muscles, resulting in impairment of their regenerative ability following muscle injury. However, it remains elusive about molecules involved in this age-related alteration of Wnt/ß-catenin signal in myogenic cells. To clarify this issue, we carried out expression analyses of Wnt receptor genes using real-time RT-PCR in mSCs isolated from the skeletal muscles of young and aged mice. Here, we show that expression of Frizzled1 (Fzd1) was detected at high levels in mSCs of aged mice. Higher expression levels of Fzd1 were also detected in mSC-derived myogenic cells from aged mice and associated with activation of Wnt/ß-catenin signal during their myogenic differentiation in vitro. We also provide evidence that suppressed expression of Fzd1 in myogenic cells from aged mice results in a significant increase in myogenic differentiation, and its forced expression in those from young mice results in its drastic inhibition. These findings indicate the critical role of Fzd1 in altered myogenic differentiation associated with aging.


Assuntos
Diferenciação Celular/fisiologia , Receptores Frizzled/metabolismo , Células Satélites de Músculo Esquelético/citologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Fatores Etários , Envelhecimento , Animais , Células Cultivadas , Masculino , Camundongos Endogâmicos ICR , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais
17.
J Cell Sci ; 125(Pt 8): 2017-29, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22328498

RESUMO

The Ror family receptor tyrosine kinases (RTKs), Ror1 and Ror2, have been shown to play crucial roles in developmental morphogenesis by acting as receptors or co-receptors to mediate Wnt5a-induced signaling. Although Ror1, Ror2 and Wnt5a are expressed in the developing brain, little is known about their roles in the neural development. Here we show that Ror1, Ror2 and their ligand Wnt5a are highly expressed in neocortical neural progenitor cells (NPCs). Small interfering RNA (siRNA)-mediated suppression of Ror1, Ror2 or Wnt5a in cultured NPCs isolated from embryonic neocortex results in the reduction of ßIII-tubulin-positive neurons that are produced from NPCs possibly through the generation of T-box brain 2 (Tbr2)-positive intermediate progenitors. BrdU-labeling experiments further reveal that the proportion of proliferative and neurogenic NPCs, which are positive for neural progenitor cell marker (Pax6) but negative for glial cell marker (glial fibrillary acidic protein; GFAP), is reduced within a few days in culture following knockdown of these molecules, suggesting that Ror1, Ror2 and Wnt5a regulate neurogenesis through the maintenance of NPCs. Moreover, we show that Dishevelled 2 (Dvl2) is involved in Wnt5a-Ror1 and Wnt5a-Ror2 signaling in NPCs, and that suppressed expression of Dvl2 indeed reduces the proportion of proliferative and neurogenic NPCs. Interestingly, suppressed expression of either Ror1 or Ror2 in NPCs in the developing neocortex results in the precocious differentiation of NPCs into neurons, and their forced expression results in delayed differentiation. Collectively, these results indicate that Wnt5a-Ror1 and Wnt5a-Ror2 signaling pathways play roles in maintaining proliferative and neurogenic NPCs during neurogenesis of the developing neocortex.


Assuntos
Neocórtex/embriologia , Neocórtex/enzimologia , Células-Tronco Neurais/enzimologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Neocórtex/citologia , Células-Tronco Neurais/citologia , Neurogênese , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a
18.
Genes Cells ; 18(7): 608-19, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23755735

RESUMO

Activation of Wnt5a-Ror2 signaling has been shown to be associated with epithelial-to-mesenchymal transition (EMT) of epidermoid carcinoma cells via induction of matrix metalloproteinase-2 (MMP-2). Because EMT has also been implicated in the progression of tissue fibrosis, we examined the possible association of Wnt5a-Ror2 signaling with renal fibrosis. Here, we show that expression of Wnt5a and Ror2 is induced in a damaged mouse kidney after unilateral ureteral obstruction (UUO) treatment. Immunofluorescent analysis showed that Ror2 expression is clearly induced in tubular epithelial cells during renal fibrosis, and these Ror2-expressing cells also express Snail and vimentin, markers of mesenchymal cells, suggesting that Ror2 might be induced in epithelial cells undergoing EMT. We also found that MMP-2 expression is induced at Ror2-positive epithelium adjacent to significantly disrupted tubular basement membrane (TBM). Interestingly, reduced expression of MMP-2 is detected at epithelium in damaged kidneys from Ror2(+/-) mice compared with those from wild-type Ror2(+/+) mice. Importantly, extents of TBM disruption are apparently reduced in damaged kidneys from Ror2(+/-) mice compared with those from wild-type mice. Collectively, these findings indicate that activation of Wnt5a-Ror2 signaling in epithelial cells undergoing EMT may play an important role in disrupting TBM via MMP-2 induction during renal fibrosis.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Fibrose/metabolismo , Nefropatias/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Proteínas Wnt/metabolismo , Animais , Modelos Animais de Doenças , Células Epiteliais/patologia , Fibrose/patologia , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Transdução de Sinais , Proteínas Wnt/genética , Proteína Wnt-5a
19.
In Vitro Cell Dev Biol Anim ; 60(5): 489-501, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38587578

RESUMO

Ror-family receptors, Ror1 and Ror2, are type I transmembrane proteins that possess an extracellular cysteine-rich domain, which is conserved throughout the Frizzled-family receptors and is a binding site for Wnt ligands. Both Ror1 and Ror2 function primarily as receptors or co-receptors for Wnt5a to activate the ß-catenin-independent, non-canonical Wnt signaling, thereby regulating cell polarity, migration, proliferation, and differentiation depending on the context. Ror1 and Ror2 are expressed highly in many tissues during embryogenesis but minimally or scarcely in adult tissues, with some exceptions. In contrast, Ror1 and Ror2 are expressed in many types of cancers, and their high expression often contributes to the progression of the disease. Therefore, Ror1 and Ror2 have been proposed as potential targets for the treatment of the malignancies. In this review, we provide an overview of the regulatory mechanisms of Ror1/Ror2 expression and discuss how Wnt5a-Ror1/Ror2 signaling is mediated and regulated by their interacting proteins.


Assuntos
Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Proteína Wnt-5a , Humanos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Animais , Via de Sinalização Wnt , Transdução de Sinais , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia
20.
J Biol Chem ; 287(2): 1588-99, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22128168

RESUMO

It has been shown that constitutively active Wnt5a-Ror2 signaling in osteosarcoma cell lines plays crucial roles in induced expression of matrix metalloproteinase-13 (MMP-13), required for their invasiveness; however, it remains largely unclear about the molecular basis of MMP-13 gene induction by Wnt5a-Ror2 signaling. Here we show by reporter assay that the activator protein 1 (AP1) (binding site in the promoter region of MMP-13 gene is primarily responsible for its transcriptional activation by Wnt5a-Ror2 signaling in osteosarcoma cell lines SaOS-2 and U2OS. Chromatin immunoprecipitation assays revealed that c-Jun and ATF2 are crucial transcription factors recruited to the AP1-binding site in the MMP-13 gene promoter during Wnt5a-Ror2 signaling in SaOS-2 cells. Using siRNA-mediated suppression or specific inhibitors, we also show that Dishevelled2 (Dvl2) and c-Jun N-terminal kinase are required for MMP-13 gene induction presumably via phosphorylation of c-Jun and ATF2 during Wnt5a-Ror2 signaling in SaOS-2 cells. Interestingly, Dvl2 and Rac1, but not Dvl3, are required for MMP-13 expression in SaOS-2 cells, whereas Dvl3, but not Dvl2 and Rac1, is required for its expression in U2OS cells, indicating the presence of distinct intracellular signaling machineries leading to expression of the same gene, in this case MMP-13 gene in different osteosarcoma cell lines. Moreover, we provide evidence suggesting that Wnt5a-Ror2 signaling might also be required for expression of MMP-13 gene during the development of the cartilaginous tissue.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Metaloproteinase 13 da Matriz/biossíntese , Proteínas Proto-Oncogênicas/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas Desgrenhadas , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Metaloproteinase 13 da Matriz/genética , Camundongos , Camundongos Knockout , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação/fisiologia , Regiões Promotoras Genéticas/fisiologia , Proteínas Proto-Oncogênicas/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Proteínas Wnt/genética , Proteína Wnt-5a , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA