RESUMO
Social behavior is essential for health, survival, and reproduction of animals; however, the role of astrocytes in social behavior remains largely unknown. The transmembrane protein CD38, which acts both as a receptor and ADP-ribosyl cyclase to produce cyclic ADP-ribose (cADPR) regulates social behaviors by promoting oxytocin release from hypothalamic neurons. CD38 is also abundantly expressed in astrocytes in the postnatal brain and is important for astroglial development. Here, we demonstrate that the astroglial-expressed CD38 plays an important role in social behavior during development. Selective deletion of CD38 in postnatal astrocytes, but not in adult astrocytes, impairs social memory without any other behavioral abnormalities. Morphological analysis shows that depletion of astroglial CD38 in the postnatal brain interferes with synapse formation in the medial prefrontal cortex (mPFC) and hippocampus. Moreover, astroglial CD38 expression promotes synaptogenesis of excitatory neurons by increasing the level of extracellular SPARCL1 (also known as Hevin), a synaptogenic protein. The release of SPARCL1 from astrocytes is regulated by CD38/cADPR/calcium signaling. These data demonstrate a novel developmental role of astrocytes in neural circuit formation and regulation of social behavior in adults.
Assuntos
Antígenos CD , ADP-Ribose Cíclica , Animais , ADP-Ribosil Ciclase 1/genética , Antígenos CD/metabolismo , ADP-Ribose Cíclica/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Astrócitos/metabolismo , Sinapses/metabolismoRESUMO
Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that oxidatively degrade various polysaccharides, such as cellulose. Despite extensive research on this class of enzymes, the role played by their C-terminal regions predicted to be intrinsically disordered (dCTR) has been overlooked. Here, we investigated the function of the dCTR of an LPMO, called CoAA9A, up-regulated during plant infection by Colletotrichum orbiculare, the causative agent of anthracnose. After recombinant production of the full-length protein, we found that the dCTR mediates CoAA9A dimerization in vitro, via a disulfide bridge, a hitherto-never-reported property that positively affects both binding and activity on cellulose. Using SAXS experiments, we show that the homodimer is in an extended conformation. In vivo, we demonstrate that gene deletion impairs formation of the infection-specialized cell called appressorium and delays penetration of the plant. Using immunochemistry, we show that the protein is a dimer not only in vitro but also in vivo when secreted by the appressorium. As these peculiar LPMOs are also found in other plant pathogens, our findings open up broad avenues for crop protection.
Assuntos
Proteínas Fúngicas , Polissacarídeos , Multimerização Proteica , Espalhamento a Baixo Ângulo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Difração de Raios X , Polissacarídeos/metabolismo , Celulose/metabolismoRESUMO
Innate behavior, such as courtship behavior, is controlled by a genetically defined set of neurons. To date, it remains challenging to visualize and artificially control the neural population that is active during innate behavior in a whole-brain scale. Immediate early genes (IEGs), whose expression is induced by neural activity, can serve as powerful tools to map neural activity in the animal brain. We screened for IEGs in vinegar fly Drosophila melanogaster and identified stripe/egr-1 as a potent neural activity marker. Focusing on male courtship as a model of innate behavior, we demonstrate that stripe-GAL4-mediated reporter expression can label fruitless (fru)-expressing neurons involved in courtship in an activity (experience)-dependent manner. Optogenetic reactivation of the labeled neurons elicited sexual behavior in males, whereas silencing of the labeled neurons suppressed courtship and copulation. Further, by combining stripe-GAL4-mediated reporter expression and detection of endogenous Stripe expression, we established methods that can label neurons activated under different contexts in separate time windows in the same animal. The cell assembly analysis of fru neural population in males revealed that distinct groups of neurons are activated during interactions with a female or another male. These methods will contribute to building a deeper understanding of neural circuit mechanisms underlying innate insect behavior.
Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Genes Precoces , Fatores de Transcrição , Animais , Feminino , Masculino , Corte , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Instinto , Proteínas do Tecido Nervoso/metabolismo , Comportamento Sexual Animal , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: KRAS mutations frequently occur in cancers, particularly pancreatic ductal adenocarcinoma, colorectal cancer, and non-small cell lung cancer. Although KRASG12C inhibitors have recently been approved, effective precision therapies have not yet been established for all KRAS-mutant cancers. Many treatments for KRAS-mutant cancers, including epigenome-targeted drugs, are currently under investigation. Small ubiquitin-like modifier (SUMO) proteins are a family of small proteins covalently attached to and detached from other proteins in cells via the processes called SUMOylation and de-SUMOylation. We assessed whether SUMOylation inhibition was effective in KRAS-mutant cancer cells. METHODS: The efficacy of the first-in-class SUMO-activating enzyme E inhibitor TAK-981 (subasumstat) was assessed in multiple human and mouse KRAS-mutated cancer cell lines. A gene expression assay using a TaqMan array was used to identify biomarkers of TAK-981 efficacy. The biological roles of SUMOylation inhibition and subsequent regulatory mechanisms were investigated using immunoblot analysis, immunofluorescence assays, and mouse models. RESULTS: We discovered that TAK-981 downregulated the expression of the currently undruggable MYC and effectively suppressed the growth of MYC-expressing KRAS-mutant cancers across different tissue types. Moreover, TAK-981-resistant cells were sensitized to SUMOylation inhibition via MYC-overexpression. TAK-981 induced proteasomal degradation of MYC by altering the balance between SUMOylation and ubiquitination and promoting the binding of MYC and Fbxw7, a key factor in the ubiquitin-proteasome system. The efficacy of TAK-981 monotherapy in immunocompetent and immunodeficient mouse models using a mouse-derived CMT167 cell line was significant but modest. Since MAPK inhibition of the KRAS downstream pathway is crucial in KRAS-mutant cancer, we expected that co-inhibition of SUMOylation and MEK might be a good option. Surprisingly, combination treatment with TAK-981 and trametinib dramatically induced apoptosis in multiple cell lines and gene-engineered mouse-derived organoids. Moreover, combination therapy resulted in long-term tumor regression in mouse models using cell lines of different tissue types. Finally, we revealed that combination therapy complementally inhibited Rad51 and BRCA1 and accumulated DNA damage. CONCLUSIONS: We found that MYC downregulation occurred via SUMOylation inhibition in KRAS-mutant cancer cells. Our findings indicate that dual inhibition of SUMOylation and MEK may be a promising treatment for MYC-expressing KRAS-mutant cancers by enhancing DNA damage accumulation.
Assuntos
Dano ao DNA , Proteínas Proto-Oncogênicas p21(ras) , Sumoilação , Sumoilação/efeitos dos fármacos , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Mutação , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genéticaRESUMO
Nephrogenic adenoma (NA) is an epithelial lesion that usually occurs in the mucosa of the urinary tract. Rare cases of deep infiltrative or perinephric lesions have also been reported. Recently, NA with characteristic fibromyxoid stroma (fibromyxoid NA) has been proposed as a distinct variant. Although shedding of distal renal tubular cells due to urinary tract rupture has been postulated as the cause of NA in general, the mechanism underlying extraurinary presentation of NA and fibromyxoid stromal change in fibromyxoid NA remains unknown. In this study, we performed mass spectrometry (MS) analysis in a case of perinephric fibromyxoid NA of an 82-year-old man who underwent right nephroureterectomy for distal ureteral cancer. The patient had no prior history of urinary tract injury or radiation. Periodic acid-Schiff staining-positive eosinophilic structureless deposits in the stroma of fibromyxoid NA were microdissected and subjected to liquid chromatography/MS. The analysis revealed the presence of a substantial amount of uromodulin (Tamm-Horsfall protein). The presence of urinary content in the stroma of perinephric fibromyxoid NA suggests that urinary tract rupture and engraftment of renal tubular epithelial cells directly cause the lesion.
Assuntos
Adenoma , Masculino , Humanos , Idoso de 80 Anos ou mais , Uromodulina , Adenoma/patologia , Espectrometria de MassasRESUMO
BACKGROUND: Aspiration pneumonia (AP), which is a major cause of death in the elderly, does present with typical symptoms in the early stages of onset, thus it is difficult to detect and treat at an early stage. In this study, we identified biomarkers that are useful for the detection of AP and focused on salivary proteins, which may be collected non-invasively. Because expectorating saliva is often difficult for elderly people, we collected salivary proteins from the buccal mucosa. METHODS: We collected samples from the buccal mucosa of six patients with AP and six control patients (no AP) in an acute-care hospital. Following protein precipitation using trichloroacetic acid and washing with acetone, the samples were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS/MS). We also determined the levels of cytokines and chemokines in non-precipitated samples from buccal mucosa. RESULTS: Comparative quantitative analysis of LC-MS/MS spectra revealed 55 highly (P values < 0.10) abundant proteins with high FDR confidence (q values < 0.01) and high coverage (> 50%) in the AP group compared with the control group. Among the 55 proteins, the protein abundances of four proteins (protein S100-A7A, eukaryotic translation initiation factor 1, Serpin B4, and peptidoglycan recognition protein 1) in the AP group showed a negative correlation with the time post-onset; these proteins are promising AP biomarker candidates. In addition, the abundance of C-reactive protein (CRP) in oral samples was highly correlated with serum CRP levels, suggesting that oral CRP levels may be used as a surrogate to predict serum CRP in AP patients. A multiplex cytokine/chemokine assay revealed that MCP-1 tended to be low, indicating unresponsiveness of MCP-1 and its downstream immune pathways in AP. CONCLUSION: Our findings suggest that oral salivary proteins, which are obtained non-invasively, can be utilized for the detection of AP.
RESUMO
Millimeter-wave irradiation of wheat seeds enhances the growth of roots under flooding stress, but its mechanism is not clearly understood. To understand the role of millimeter-wave irradiation on root-growth enhancement, membrane proteomics was performed. Membrane fractions purified from wheat roots were evaluated for purity. H+-ATPase and calnexin, which are protein markers for membrane-purification efficiency, were enriched in a membrane fraction. A principal-component analysis of the proteomic results indicated that the millimeter-wave irradiation of seeds affects membrane proteins in grown roots. Proteins identified using proteomic analysis were confirmed using immunoblot or polymerase chain reaction analyses. The abundance of cellulose synthetase, which is a plasma-membrane protein, decreased under flooding stress; however, it increased with millimeter-wave irradiation. On the other hand, the abundance of calnexin and V-ATPase, which are proteins in the endoplasmic reticulum and vacuolar, increased under flooding stress; however, it decreased with millimeter-wave irradiation. Furthermore, NADH dehydrogenase, which is found in mitochondria membranes, was upregulated due to flooding stress but downregulated following millimeter-wave irradiation even under flooding stress. The ATP content showed a similar trend toward change in NADH dehydrogenase expression. These results suggest that millimeter-wave irradiation improves the root growth of wheat via the transitions of proteins in the plasma membrane, endoplasmic reticulum, vacuolar, and mitochondria.
Assuntos
Raízes de Plantas , Estresse Fisiológico , Raízes de Plantas/metabolismo , Triticum/metabolismo , Proteômica/métodos , Calnexina/metabolismo , NADH Desidrogenase/metabolismo , Inundações , Glycine max/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de PlantasRESUMO
Arabidopsis non-host resistance against non-adapted fungal pathogens including Colletotrichum fungi consists of pre-invasive and post-invasive immune responses. Here we report that non-host resistance against non-adapted Colletotrichum spp. in Arabidopsis leaves requires CURLY LEAF (CLF), which is critical for leaf development, flowering and growth. Microscopic analysis of pathogen behavior revealed a requirement for CLF in both pre- and post-invasive non-host resistance. The loss of a functional SEPALLATA3 (SEP3) gene, ectopically expressed in clf mutant leaves, suppressed not only the defect of the clf plants in growth and leaf development but also a defect in non-host resistance against the non-adapted Colletotrichum tropicale. However, the ectopic overexpression of SEP3 in Arabidopsis wild-type leaves did not disrupt the non-host resistance. The expression of multiple plant defensin (PDF) genes that are involved in non-host resistance against C. tropicale was repressed in clf leaves. Moreover, the Octadecanoid-responsive Arabidopsis 59 (ORA59) gene, which is required for PDF expression, was also repressed in clf leaves. Notably, when SEP3 was overexpressed in the ora59 mutant background, C. tropicale produced clear lesions in the inoculated leaves, indicating an impairment in non-host resistance. Furthermore, ora59 plants overexpressing SEP3 exhibited a defect in leaf immunity to the adapted Colletotrichum higginsianum. Since the ora59 plants overexpressing SEP3 did not display obvious leaf curling or reduced growth, in contrast to the clf mutants, these results strongly suggest that concomitant SEP3 repression and ORA59 induction via CLF are required for Arabidopsis leaf immunity to Colletotrichum fungi, uncoupled from CLF's function in growth and leaf development.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Colletotrichum/fisiologia , Proteínas de Homeodomínio/metabolismo , Doenças das Plantas/imunologia , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Defensinas , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Mutação com Perda de Função , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/imunologia , Fatores de Transcrição/genéticaRESUMO
Several epidemiological studies have suggested that Epstein-Barr virus (EBV) lytic infection is essential for the development of nasopharyngeal carcinoma (NPC), as the elevation of antibody titers against EBV lytic proteins is a common feature of NPC. Although ZEBRA protein is a key trigger for the initiation of lytic infection, whether its expression affects the prognosis and pathogenesis of NPC remains unclear. In this study, 64 NPC biopsy specimens were analyzed using immunohistochemistry. We found that ZEBRA was significantly associated with a worsening of progression-free survival in NPC (adjusted hazard ratio, 3.58; 95% confidence interval, 1.08-11.87; p = 0.037). Moreover, ZEBRA expression positively correlated with key endocrinological proteins, estrogen receptor α, and aromatase. The transcriptional level of ZEBRA is activated by estrogen in an estrogen receptor α-dependent manner, resulting in an increase in structural gene expression levels and extracellular virus DNA copy number in NPC cell lines, reminiscent of lytic infection. Interestingly, it did not suppress cellular proliferation or increase apoptosis, in contrast with cells treated with 12-O-tetradecanoylphorbol-13-acetate and sodium butyrate, indicating that viral production induced by estrogen is not a cell lytic phenomenon. Our results suggest that intratumoral estrogen overproduced by aromatase could induce ZEBRA expression and EBV reactivation, contributing to the progression of NPC.
Assuntos
Infecções por Vírus Epstein-Barr , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Transativadores , Aromatase , Receptor alfa de Estrogênio , Estrogênios , Herpesvirus Humano 4/patogenicidade , Humanos , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/virologia , Transativadores/genéticaRESUMO
This study presents the isolation of a novel strain of Dehalococcoides mccartyi, NIT01, which can completely dechlorinate up to 4.0 mM of trichloroethene to ethene via 1,2-cis-dichroroethene and vinyl chloride within 25 days. Strain NIT01 dechlorinated chloroethenes (CEs) at a temperature range of 25-32 °C and pH range of 6.5-7.8. The activity of the strain was inhibited by salt at more than 1.3% and inactivated by 1 h exposure to 2.0% air or 0.5 ppm hypochlorous acid. The genome of NIT01 was highly similar to that of the Dehalococcoides strains DCMB5, GT, 11a5, CBDB1, and CG5, and all included identical 16S rRNA genes. Moreover, NIT01 had 19 rdhA genes including NIT01-rdhA7 and rdhA13, which are almost identical to vcrA and pceA that encode known dehalogenases for tetrachloroethene and vinyl chloride, respectively. We also extracted RdhAs from the membrane fraction of NIT01 using 0.5% n-dodecyl-ß-d-maltoside and separated them by anion exchange chromatography to identify those involved in CE dechlorination. LC/MS identification of the LDS-PAGE bands and RdhA activities in the fractions indicated cellular expression of six RdhAs. NIT01-RdhA7 (VcrA) and NIT01-RdhA15 were highly detected and NIT01-RdhA6 was the third-most detected. Among these three RdhAs, NIT01-RdhA15 and NIT01-RdhA6 had no biochemically identified relatives and were suggested to be novel functional dehalogenases for CEs. The expression of multiple dehalogenases may support bacterial tolerance to high concentrations of CEs.
Assuntos
Chloroflexi , Tricloroetileno , Cloreto de Vinil , Biodegradação Ambiental , Chloroflexi/genética , Chloroflexi/metabolismo , Dehalococcoides , RNA Ribossômico 16S/genética , Tricloroetileno/metabolismo , Cloreto de Vinil/química , Cloreto de Vinil/metabolismoRESUMO
The plant epidermis is the first line of plant defense against pathogen invasion, and likely contains important regulatory proteins related to the plant-pathogen interaction. This study aims to identify the candidates of these regulatory proteins expressed in the plant epidermis. We performed comparative proteomic studies to identify rapidly and locally expressed proteins in the leaf epidermis inoculated with fungal phytopathogen. The conidia solutions were dropped onto the Arabidopsis leaf surface, and then, we collected the epidermal tissues from inoculated and mock-treated leaves at 4 and 24 hpi. The label-free quantification methods showed that expressions of Arabidopsis proteins, which are related to defense signals, such as BAK1, MKK5, receptor-like protein kinases, transcription factors, and stomatal functions, were rapidly induced in the epidermal tissues of inoculated leaves. In contrast, most of them were not differentially regulated by fugal inoculation in the whole leaves. These findings clearly indicate that epidermal proteomics can monitor locally expressed proteins in inoculated areas of plant tissues. We also identified the 61 fungal proteins, including effector-like proteins specifically expressed on the Arabidopsis epidermis. Our new findings suggested that epidermal proteomics is useful for understanding the local expressions of plant and fungal proteins related to their interactions.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteômica/métodos , Arabidopsis/metabolismo , Doenças das Plantas/microbiologia , Proteoma/metabolismo , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Arabidopsis/metabolismo , Epiderme/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Quinases/metabolismo , Regulação da Expressão Gênica de Plantas , Epiderme Vegetal/metabolismoRESUMO
Heterochromatin protein (HP) 1γ, a component of heterochromatin in eukaryotes, is involved in H3K9 methylation. Although HP1γ is expressed strongly in neural tissues and neural stem cells, its functions are unclear. To elucidate the roles of HP1γ, we analyzed HP1γ -deficient (HP1γ KO) mouse embryonic neurospheres and determined that HP1γ KO neurospheres tended to differentiate after quaternary culture. Several genes normally expressed in neuronal cells were upregulated in HP1γ KO undifferentiated neurospheres, but not in the wild type (WT). Compared to that in the control neurospheres, the occupancy of H3K27me3 was lower around the transcription start sites (TSSs) of these genes in HP1γ KO neurospheres, while H3K9me2/3, H3K4me3, and H3K27ac amounts remained unchanged. Moreover, amounts of the H3K27me2/3 demethylases, UTX, and JMJD3, were increased around the TSSs of these genes. Treatment with GSK-J4, an inhibitor of H3K27 demethylases, decreased the expression of genes upregulated in HP1γ KO neurospheres, along with an increase of H3K27me3 amounts. Therefore, in murine neurospheres, HP1γ protected the promoter sites of differentiated cell-specific genes against H3K27 demethylases to repress the expression of these genes. A better understanding of central cellular processes such as histone methylation will help elucidate critical events such as cell-specific gene expression, epigenetics, and differentiation.
Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Imunofluorescência , Ontologia Genética , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sítio de Iniciação de Transcrição/fisiologiaRESUMO
Plants have developed various self-defense systems to survive many types of unfavorable conditions. Heat shock (HS) treatment, an abiotic stress, activates salicylic acid (SA) biosynthesis to enhance resistance to biotic stresses in some plant species. Since SA is produced from the shikimate pathway, other related metabolic pathways were expected to be upregulated by HS treatment. We speculated that tocopherol biosynthesis utilizing chorismic acid would be activated by HS treatment. In Arabidopsis, expression analysis of tocopherol biosynthetic genes, HPPD, VTE2, VTE3, VTE1, and VTE4, in combination with measurement of metabolites, indicated that HS treatment enhanced the biosynthesis and accumulation of tocopherols. Analyses using an SA biosynthesis-deficient mutant indicated that the upregulation of tocopherol biosynthesis was independent of the SA-mediated signaling pathway.
Assuntos
Resposta ao Choque Térmico , Tocoferóis/metabolismo , Arabidopsis/metabolismo , Vias Biossintéticas/genéticaRESUMO
Pyridine nucleotides such as a nicotinamide adenine dinucleotide (NAD) are known as plant defense activators. We previously reported that nicotinamide mononucleotide (NMN) enhanced disease resistance against fungal pathogen Fusarium graminearum in barley and Arabidopsis. In this study, we reveal that the pretreatment of nicotinamide (NIM), which does not contain nucleotides, effectively suppresses disease development of Fusarium Head Blight (FHB) in wheat plants. Correspondingly, deoxynivalenol (DON) mycotoxin accumulation was also significantly decreased by NIM pretreatment. A metabolome analysis showed that several antioxidant and antifungal compounds such as trigonelline were significantly accumulated in the NIM-pretreated spikes after inoculation of F. graminearum. In addition, some metabolites involved in the DNA hypomethylation were accumulated in the NIM-pretreated spikes. On the other hand, fungal metabolites DON and ergosterol peroxide were significantly reduced by the NIM pretreatment. Since NIM is relative stable and inexpensive compared with NMN and NAD, it may be more useful for the control of symptoms of FHB and DON accumulation in wheat and other crops.
Assuntos
Fusarium/efeitos dos fármacos , Niacinamida/farmacologia , Doenças das Plantas/prevenção & controle , Triticum/microbiologia , Fusarium/metabolismo , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Tricotecenos/metabolismo , Triticum/efeitos dos fármacosRESUMO
Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD), induces disease resistance to the Fusarium head blight fungus Fusarium graminearum in Arabidopsis and barley, but it is unknown at which stage of the infection it acts. Since the rate of haustorial formation of an obligate biotrophic barley powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) was significantly reduced in NMN-treated coleoptile epidermal cells, the possibility that NMN induces resistance to the biotrophic stage of F. graminearum was investigated. The results show that NMN treatment caused the wandering of hyphal growth and suppressed the formation of appressoria-like structures. Furthermore, we developed an experimental system to monitor the early stage of infection in real-time and analyzed the infection behavior. We observed that the hyphae elongated windingly by NMN treatment. These results suggest that NMN potentiates resistance to the biotrophic invasion of F. graminearum as well as Bgh.
Assuntos
Ascomicetos/patogenicidade , Fusarium/patogenicidade , Hordeum/microbiologia , Mononucleotídeo de Nicotinamida/farmacologia , Doenças das Plantas/microbiologia , Resistência à Doença , Fusarium/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Hordeum/efeitos dos fármacos , Hordeum/genética , Interações Hospedeiro-Patógeno/fisiologia , Hifas/efeitos dos fármacos , Hifas/patogenicidade , Plantas Geneticamente ModificadasRESUMO
In Arabidopsis thaliana, a mitogen-activated protein kinase pathway, MEKK1-MKK1/MKK2-MPK4, is important for basal resistance and disruption of this pathway results in dwarf, autoimmune phenotypes. To elucidate the complex mechanisms activated by the disruption of this pathway, we have previously developed a mutant screening system based on a dwarf autoimmune line that overexpressed the N-terminal regulatory domain of MEKK1. Here, we report that the second group of mutants, smn2, had defects in the SMN2 gene, encoding a DEAD-box RNA helicase. SMN2 is identical to HEN2, whose function is vital for the nuclear RNA exosome because it provides non-ribosomal RNA specificity for RNA turnover, RNA quality control and RNA processing. Aberrant SMN1/RPS6 transcripts were detected in smn2 and hen2 mutants. Disease resistance against Pseudomonas syringae pv. tomato DC3000 (hopA1), which is conferred by SMN1/RPS6, was decreased in smn2 mutants, suggesting a functional connection between SMN1/RPS6 and SMN2/HEN2. We produced double mutants mekk1smn2 and mpk4smn2 to determine whether the smn2 mutations suppress the dwarf, autoimmune phenotypes of the mekk1 and mpk4 mutants, as the smn1 mutations do. As expected, the mekk1 and mpk4 phenotypes were suppressed by the smn2 mutations. These results suggested that SMN2 is involved in the proper function of SMN1/RPS6. The Gene Ontology enrichment analysis using RNA-seq data showed that defense genes were downregulated in smn2, suggesting a positive contribution of SMN2 to the genome-wide expression of defense genes. In conclusion, this study provides novel insight into plant immunity via SMN2/HEN2, an essential component of the nuclear RNA exosome.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , RNA Helicases DEAD-box/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/fisiologia , Estudo de Associação Genômica AmplaRESUMO
Fusarium graminearum produces trichothecene mycotoxins in infected grains and axenic liquid culture. A proposed regulatory model of trichothecene biosynthesis was examined in relation to nitrogen utilization. First, we showed that an important factor for the stimulation of trichothecene biosynthesis was not the occurrence of agmatine as a specific inducer molecule, but rather continuous acidification of the liquid culture medium arising from agmatine catabolism. When the pH of the L-Gln synthetic medium was frequently adjusted to the pH of the agmatine culture, trichothecene productivity of the L-Gln culture was equal to that of the agmatine culture. For efficient trichothecene biosynthesis, the culture pH should be lowered at an appropriate time point during the early growth stage. Second, we re-evaluated the role of the nitrogen regulatory GATA transcription factor AreA in trichothecene biosynthesis. Since Tri6 encodes a transcription factor indispensable for trichothecene biosynthesis, all fifteen AreA-binding consensus sequences in the Tri6 promoter were mutated. The mutant could catabolize L-Phe as the sole nitrogen source; furthermore, the pH profile of the synthetic L-Phe medium (initial pH 4.2) was the same as that of the wild-type (WT) strain. Under such conditions, the promoter mutant exhibited approximately 72% of the trichothecene productivity compared to the WT strain. Thus, F. graminearum AreA (FgAreAp) is dispensable for the functioning of the Tri6 promoter, but it contributes to the increased production of mycotoxin under mildly acidic conditions to some extent. Further investigations on the culture pH revealed that extremely low pH bypasses the function of FgAreAp.
Assuntos
Agmatina/metabolismo , Fusarium/genética , Fatores de Transcrição/genética , Tricotecenos/metabolismo , Meios de Cultura/química , Meios de Cultura/farmacologia , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Nitrogênio/metabolismo , Poliaminas/metabolismo , Fatores de Transcrição/metabolismoRESUMO
The genome of Arabidopsis encodes more than 60 mitogen-activated protein kinase kinase (MAPKK) kinases (MAPKKKs); however, the functions of most MAPKKKs and their downstream MAPKKs are largely unknown. Here, MAPKKK δ-1 (MKD1), a novel Raf-like MAPKKK, was isolated from Arabidopsis as a subunit of a complex including the transcription factor AtNFXL1, which is involved in the trichothecene phytotoxin response and in disease resistance against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (PstDC3000). A MKD1-dependent cascade positively regulates disease resistance against PstDC3000 and the trichothecene mycotoxin-producing fungal pathogen Fusarium sporotrichioides. MKD1 expression was induced by trichothecenes derived from Fusarium species. MKD1 directly interacted with MKK1 and MKK5 in vivo, and phosphorylated MKK1 and MKK5 in vitro. Correspondingly, mkk1 mutants and MKK5RNAi transgenic plants showed enhanced susceptibility to F. sporotrichioides. MKD1 was required for full activation of two MAPKs (MPK3 and MPK6) by the T-2 toxin and flg22. Finally, quantitative phosphoproteomics suggested that an MKD1-dependent cascade controlled phosphorylation of a disease resistance protein, SUMO, and a mycotoxin-detoxifying enzyme. Our findings suggest that the MKD1-MKK1/MKK5-MPK3/MPK6-dependent signaling cascade is involved in the full immune responses against both bacterial and fungal infection.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Quinases de Proteína Quinase Ativadas por Mitógeno , Micoses , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fusarium , Regulação da Expressão Gênica de Plantas , MAP Quinase Quinase Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismoRESUMO
Extensive utilization of silver nanoparticles (NPs) in agricultural products results in their interaction with other chemicals in the environment. To study the combined effects of silver NPs with nicotinic acid and potassium nitrate (KNO3), a gel-free/label-free proteomic technique was used. Root length/weight and hypocotyl length/weight of soybean were enhanced by silver NPs mixed with nicotinic acid and KNO3. Out of a total 6340 identified proteins, 351 proteins were significantly changed, out of which 247 and 104 proteins increased and decreased, respectively. Differentially changed proteins were predominantly associated with protein degradation and synthesis according to the functional categorization. Protein-degradation-related proteins mainly consisted of the proteasome degradation pathway. The cell death was significantly higher in the root tips of soybean under the combined treatment compared to flooding stress. Accumulation of calnexin/calreticulin and glycoproteins was significantly increased under flooding with silver NPs, nicotinic acid, and KNO3. Growth of soybean seedlings with silver NPs, nicotinic acid, and KNO3 was improved under flooding stress. These results suggest that the combined mixture of silver NPs, nicotinic acid, and KNO3 causes positive effects on soybean seedling by regulating the protein quality control for the mis-folded proteins in the endoplasmic reticulum. Therefore, it might improve the growth of soybean under flooding stress.
Assuntos
Inundações , Glycine max/efeitos dos fármacos , Nanopartículas Metálicas/química , Niacina/farmacologia , Nitratos/farmacologia , Compostos de Potássio/farmacologia , Prata/química , Calnexina/metabolismo , Calreticulina/metabolismo , Regulação para Baixo/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Nanopartículas Metálicas/toxicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Estresse Fisiológico , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacosRESUMO
The cucumber anthracnose fungus Colletotrichum orbiculare forms a specialized infection structure, called an appressorium. Appressorium differentiation relies on fungal perception of physical and biochemical signals at the plant surface. Our previous report showed that the morphogenesis-related NDR (nuclear Dbf2-related) kinase pathway (MOR) is crucial for translating plant-derived signals for appressorium development. Here, we focused on identifying transcriptional regulators downstream of MOR that are involved in plant signal sensing and transduction for appressorium development. Based on whole-genome transcript profiling, we identified a Zn(II)2Cys6 transcription factor, CoMTF4, as a potential downstream factor of MOR. CoMTF4 was expressed in planta rather than in vitro under the control of the NDR kinase CoCbk1. Phenotypes of comtf4 mutants, strains with constitutively active CoCbk1 and strains with constitutive overexpression of CoMTF4 suggested that CoMtf4 acts downstream of MOR. Furthermore, nuclear localization of CoMtf4 was dependent on the MOR and responsive to plant-derived signals that lead to appressorium morphogenesis. Thus, we conclude that CoMtf4 is a transcription factor downstream of MOR that is essential for appressorium morphogenesis and pathogenesis and is regulated in response to plant-derived signals. This study provides insights into fungal sensing of plant signals and subsequent responses critical for appressorium formation.