Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203231

RESUMO

Early osseointegration is important to achieve initial stability after implant placement. We have previously reported that atmospheric-pressure plasma treatment confers superhydrophilicity to titanium. Herein, we examined the effects of titanium implant material, which was conferred superhydrophilicity by atmospheric-pressure plasma treatment, on the surrounding tissue in rat femur. Control and experimental groups included untreated screws and those irradiated with atmospheric-pressure plasma using piezobrush, respectively. The femurs of 8-week-old male Sprague-Dawley rats were used for in vivo experiments. Various data prepared from the Micro-CT analysis showed results showing that more new bone was formed in the test group than in the control group. Similar results were shown in histological analysis. Thus, titanium screw, treated with atmospheric-pressure plasma, could induce high hard tissue differentiation even at the in vivo level. This method may be useful to achieve initial stability after implant placement.


Assuntos
Implantes Dentários , Titânio/química , Animais , Fêmur/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Osseointegração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Titânio/farmacologia
2.
Int J Mol Sci ; 20(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781372

RESUMO

Ingredients and surface modification methods are being continually developed to improve osseointegration of dental implants and reduce healing times. In this study, we demonstrate in vitro that, by applying concentrated alkali treatment to NANOZR with strong bending strength and fracture toughness, a significant improvement in the bone differentiation of rat bone marrow cells can be achieved. We investigated the influence of materials modified with this treatment in vivo, on implanted surrounding tissues using polychrome sequential fluorescent labeling and micro-computer tomography scanning. NANOZR implant screws in the alkali-treated group and the untreated group were evaluated after implantation in the femur of Sprague⁻Dawley male rats, indicating that the amount of new bone in the alkali-modified NANOZR was higher than that of unmodified NANOZR. Alkali-modified NANOZR implants proved to be useful for the creation of new implant materials.


Assuntos
Álcalis/farmacologia , Implantes Experimentais , Nanocompostos/química , Osseointegração/efeitos dos fármacos , Zircônio/química , Animais , Osso e Ossos/citologia , Diferenciação Celular/efeitos dos fármacos , Masculino , Osteogênese/efeitos dos fármacos , Espectroscopia Fotoeletrônica , Ratos , Propriedades de Superfície , Microtomografia por Raio-X
3.
Int J Mol Sci ; 20(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841636

RESUMO

Alkali-treated titanium (Ti) with a porous, homogeneous, and uniform nanonetwork structure (TNS) that enables establishment of a more rapid and firmer osteointegration than titanium has recently been reported. However, the mechanisms underlying the enhanced osteogenic activity on TNS remains to be elucidated. This study aimed to evaluate the surface physicochemical properties of Ti and TNS, and investigate osteoinduction and osteointegration in vivo. Surface characteristics were evaluated using scanning electron microscopy (SEM), scanning probe microscopy (SPM), and X-ray photoelectron spectrometry (XPS), and the surface electrostatic force of TNS was determined using solid zeta potential. This study also evaluated the adsorption of bovine serum albumin (BSA) and human plasma fibronectin (HFN) on Ti and TNS surfaces using quartz crystal microbalance (QCM) sensors, and apatite formation on Ti and TNS surfaces was examined using a simulated body fluid (SBF) test. Compared with Ti, the newly developed TNS enhanced BSA and HFN absorbance capacity and promoted apatite formation. Furthermore, TNS held less negative charge than Ti. Notably, sequential fluorescence labeling and microcomputed tomography assessment indicated that TNS screws implanted into rat femurs exhibited remarkably enhanced osteointegration compared with Ti screws. These results indicate that alkali-treated titanium implant with a nanonetwork structure has considerable potential for future clinical applications in dentistry and orthopedics.


Assuntos
Prótese Ancorada no Osso , Osseointegração , Titânio/química , Álcalis/química , Animais , Masculino , Nanoestruturas/química , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
4.
Int J Mol Sci ; 18(4)2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28383491

RESUMO

In recent years, zirconia has been a recognized implant material in clinical dentistry. In the present study, we investigated the performance of an alkali-modified ceria-stabilized tetragonal ZrO2 polycrystalline ceramic-based nanostructured zirconia/alumina composite (NANOZR) implant by assessing surface morphology and composition, wettability, bovine serum albumin adsorption rate, rat bone marrow (RBM) cell attachment, and capacity for inducing bone differentiation. NANOZR surfaces without and with alkali treatment served as the control and test groups, respectively. RBM cells were seeded in a microplate with the implant and cultured in osteogenic differentiation medium, and their differentiation was evaluated by measuring alkaline phosphatase (ALP) activity, osteocalcin (OCN) production, calcium deposition, and osteogenic gene expression. The alkali-treated NANOZR surface increased ALP activity, OCN production, calcium deposition, and osteogenesis-related gene expression in attached RBM cells. These data suggest that alkali treatment enhances the osteogenesis-inducing capacity of NANOZR implants and may therefore improve their biointegration into alveolar bone.


Assuntos
Óxido de Alumínio/farmacologia , Células da Medula Óssea/citologia , Materiais Dentários/farmacologia , Osteogênese/efeitos dos fármacos , Zircônio/farmacologia , Óxido de Alumínio/química , Animais , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Implantes Dentários , Materiais Dentários/química , Nanopartículas/química , Ratos , Propriedades de Superfície , Molhabilidade , Zircônio/química
5.
Int J Mol Sci ; 18(9)2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28925952

RESUMO

We would like to submit the following correction to the published paper [1].[...].

6.
Materials (Basel) ; 13(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570895

RESUMO

Nanostructured zirconia/alumina composite (NANOZR) has been explored as a suitable material for fabricating implants for patients with metal allergy. In this study, we examined the effect of UV treatment on the NANOZR surface. The experimental group was UV-treated NANOZR and the control group was untreated NANOZR. Observation of the surface of the UV-treated materials revealed no mechanical or structural change; however, the carbon content on the material surface was reduced, and the material surface displayed superhydrophilicity. Further, the effects of the UV-induced superhydrophilic properties of NANOZR plates on the adhesion behavior of various cells were investigated. Treatment of the NANOZR surface was found to facilitate protein adsorption onto it. An in vitro evaluation using rat bone marrow cells, human vascular endothelial cells, and rat periodontal ligament cells revealed high levels of adhesion in the experimental group. In addition, it was clarified that the NANOZR surface forms active oxygen and suppresses the generation of oxidative stress. Overall, the study results suggested that UV-treated NANOZR is useful as a new ceramic implant material.

7.
Int J Nanomedicine ; 12: 925-934, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28184162

RESUMO

Both bioactive ion chemistry and nanoscale surface modifications are beneficial for enhanced osseointegration of endosseous implants. In this study, a facile synthesis approach to the incorporation of bioactive Ca2+ ions into the interlayers of nanoporous structures (Ca-nano) formed on a Ti6Al4V alloy surface was developed by sequential chemical and heat treatments. Samples with a machined surface and an Na+ ion-incorporated nanoporous surface (Na-nano) fabricated by concentrated alkali and heat treatment were used in parallel for comparison. The bone response was investigated by microcomputed tomography assessment, sequential fluorescent labeling analysis, and histological and histomorphometric evaluation after 8 weeks of implantation in rat femurs. No significant differences were found in the nanotopography, surface roughness, or crystalline properties of the Ca-nano and Na-nano surfaces. Bone-implant contact was better in the Ca-nano and Na-nano implants than in the machined implant. The Ca-nano implant was superior to the Na-nano implant in terms of enhancing the volume of new bone formation. The bone formation activity consistently increased for the Ca-nano implant but ceased for the Na-nano implant in the late healing stage. These results suggest that Ca-nano implants have promising potential for application in dentistry and orthopedics.


Assuntos
Osso e Ossos/efeitos dos fármacos , Cálcio/farmacologia , Nanotecnologia/métodos , Osseointegração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ligas , Animais , Cálcio/química , Materiais Revestidos Biocompatíveis/química , Implantes Experimentais , Masculino , Osteogênese/fisiologia , Próteses e Implantes , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Titânio/química , Microtomografia por Raio-X
8.
Mater Sci Eng C Mater Biol Appl ; 59: 617-623, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26652415

RESUMO

In order to optimize the creation of a nanostructured surface on Ti6Al4V titanium alloy, an alkali treatment was performed using a 10-M NaOH solution at various temperatures (30, 40, 50, and 60°C) so as to determine the optimal temperature. This was combined with subsequent heat treatments (200, 400, 600, and 800°C) in air. The effects of different temperatures for the latter treatments on the nanostructure surface and the initial cell adhesion were evaluated, and the optimal temperature of the alkali solution was found to be 30°C. Further, the nanotopography, surface chemistry, and surface roughness of the nanoporous structure were retained after heat treatments performed at 200, 400, and 600°C, and only the phase structure was altered. The amorphous sodium titanate phase, the content of which increased with increased heat-treatment temperature, may have played a role in promoting cell adhesion on the nanoporous surface. However, heat treatment at 800°C did not enhance the cell-surface attachment. Rather, the nanostructure degraded significantly with the reappearance of Al and V.


Assuntos
Adesão Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Nanoporos , Nanoestruturas/química , Titânio/química , Ligas , Animais , Células Cultivadas , Temperatura Alta , Ratos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA