Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cereb Cortex ; 32(11): 2424-2436, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34564728

RESUMO

Temporal lobe epilepsy (TLE) patients are at risk of memory deficits, which have been linked to functional network disturbances, particularly of integration of the default mode network (DMN). However, the cellular substrates of functional network integration are unknown. We leverage a unique cross-scale dataset of drug-resistant TLE patients (n = 31), who underwent pseudo resting-state functional magnetic resonance imaging (fMRI), resting-state magnetoencephalography (MEG) and/or neuropsychological testing before neurosurgery. fMRI and MEG underwent atlas-based connectivity analyses. Functional network centrality of the lateral middle temporal gyrus, part of the DMN, was used as a measure of local network integration. Subsequently, non-pathological cortical tissue from this region was used for single cell morphological and electrophysiological patch-clamp analysis, assessing integration in terms of total dendritic length and action potential rise speed. As could be hypothesized, greater network centrality related to better memory performance. Moreover, greater network centrality correlated with more integrative properties at the cellular level across patients. We conclude that individual differences in cognitively relevant functional network integration of a DMN region are mirrored by differences in cellular integrative properties of this region in TLE patients. These findings connect previously separate scales of investigation, increasing translational insight into focal pathology and large-scale network disturbances in TLE.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Epilepsia do Lobo Temporal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia , Lobo Temporal
2.
Epilepsia ; 58(1): 137-148, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27888520

RESUMO

OBJECTIVE: In one third of patients, seizures remain after epilepsy surgery, meaning that improved preoperative evaluation methods are needed to identify the epileptogenic zone. A potential framework for such a method is network theory, as it can be applied to noninvasive recordings, even in the absence of epileptiform activity. Our aim was to identify the epileptogenic zone on the basis of hub status of local brain areas in interictal magnetoencephalography (MEG) networks. METHODS: Preoperative eyes-closed resting-state MEG recordings were retrospectively analyzed in 22 patients with refractory epilepsy, of whom 14 were seizure-free 1 year after surgery. Beamformer-based time series were reconstructed for 90 cortical and subcortical automated anatomic labeling (AAL) regions of interest (ROIs). Broadband functional connectivity was estimated using the phase lag index in artifact-free epochs without interictal epileptiform abnormalities. A minimum spanning tree was generated to represent the network, and the hub status of each ROI was calculated using betweenness centrality, which indicates the centrality of a node in a network. The correspondence of resection cavity to hub values was evaluated on four levels: resection cavity, lobar, hemisphere, and temporal versus extratemporal areas. RESULTS: Hubs were localized within the resection cavity in 8 of 14 seizure-free patients and in zero of 8 patients who were not seizure-free (57% sensitivity, 100% specificity, 73% accuracy). Hubs were localized in the lobe of resection in 9 of 14 seizure-free patients and in zero of 8 patients who were not seizure-free (64% sensitivity, 100% specificity, 77% accuracy). For the other two levels, the true negatives are unknown; hence, only sensitivity could be determined: hubs coincided with both the resection hemisphere and the resection location (temporal versus extratemporal) in 11 of 14 seizure-free patients (79% sensitivity). SIGNIFICANCE: Identifying hubs noninvasively before surgery is a valuable approach with the potential of indicating the epileptogenic zone in patients without interictal abnormalities.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiopatologia , Epilepsia Resistente a Medicamentos/patologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Potencial Evocado Motor/fisiologia , Magnetoencefalografia , Adulto , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Países Baixos , Curva ROC , Adulto Jovem
3.
Netw Neurosci ; 8(2): 437-465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952815

RESUMO

Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients, but up to 50% of patients continue to have seizures one year after the resection. In order to aid presurgical planning and predict postsurgical outcome on a patient-by-patient basis, we developed a framework of individualized computational models that combines epidemic spreading with patient-specific connectivity and epileptogeneity maps: the Epidemic Spreading Seizure and Epilepsy Surgery framework (ESSES). ESSES parameters were fitted in a retrospective study (N = 15) to reproduce invasive electroencephalography (iEEG)-recorded seizures. ESSES reproduced the iEEG-recorded seizures, and significantly better so for patients with good (seizure-free, SF) than bad (nonseizure-free, NSF) outcome. We illustrate here the clinical applicability of ESSES with a pseudo-prospective study (N = 34) with a blind setting (to the resection strategy and surgical outcome) that emulated presurgical conditions. By setting the model parameters in the retrospective study, ESSES could be applied also to patients without iEEG data. ESSES could predict the chances of good outcome after any resection by finding patient-specific model-based optimal resection strategies, which we found to be smaller for SF than NSF patients, suggesting an intrinsic difference in the network organization or presurgical evaluation results of NSF patients. The actual surgical plan overlapped more with the model-based optimal resection, and had a larger effect in decreasing modeled seizure propagation, for SF patients than for NSF patients. Overall, ESSES could correctly predict 75% of NSF and 80.8% of SF cases pseudo-prospectively. Our results show that individualised computational models may inform surgical planning by suggesting alternative resections and providing information on the likelihood of a good outcome after a proposed resection. This is the first time that such a model is validated with a fully independent cohort and without the need for iEEG recordings.


Individualized computational models of epilepsy surgery capture some of the key aspects of seizure propagation and the resective surgery. It is to be established whether this information can be integrated during the presurgical evaluation of the patient to improve surgical planning and the chances of a good surgical outcome. Here we address this question with a pseudo-prospective study that applies a computational framework of seizure propagation and epilepsy surgery­the ESSES framework­in a pseudo-prospective study mimicking the presurgical conditions. We found that within this pseudo-prospective setting, ESSES could correctly predict 75% of NSF and 80.8% of SF cases. This finding suggests the potential of individualised computational models to inform surgical planning by suggesting alternative resections and providing information on the likelihood of a good outcome after a proposed resection.

4.
Netw Neurosci ; 7(2): 811-843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397878

RESUMO

Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients, but only leads to seizure freedom for roughly two in three patients. To address this problem, we designed a patient-specific epilepsy surgery model combining large-scale magnetoencephalography (MEG) brain networks with an epidemic spreading model. This simple model was enough to reproduce the stereo-tactical electroencephalography (SEEG) seizure propagation patterns of all patients (N = 15), when considering the resection areas (RA) as the epidemic seed. Moreover, the goodness of fit of the model predicted surgical outcome. Once adapted for each patient, the model can generate alternative hypothesis of the seizure onset zone and test different resection strategies in silico. Overall, our findings indicate that spreading models based on patient-specific MEG connectivity can be used to predict surgical outcomes, with better fit results and greater reduction on seizure propagation linked to higher likelihood of seizure freedom after surgery. Finally, we introduced a population model that can be individualized by considering only the patient-specific MEG network, and showed that it not only conserves but improves the group classification. Thus, it may pave the way to generalize this framework to patients without SEEG recordings, reduce the risk of overfitting and improve the stability of the analyses.

5.
Sci Rep ; 12(1): 4086, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260657

RESUMO

Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients. However, seizure-freedom is currently achieved in only 2/3 of the patients after surgery. In this study we have developed an individualized computational model based on MEG brain networks to explore seizure propagation and the efficacy of different virtual resections. Eventually, the goal is to obtain individualized models to optimize resection strategy and outcome. We have modelled seizure propagation as an epidemic process using the susceptible-infected (SI) model on individual brain networks derived from presurgical MEG. We included 10 patients who had received epilepsy surgery and for whom the surgery outcome at least one year after surgery was known. The model parameters were tuned in in order to reproduce the patient-specific seizure propagation patterns as recorded with invasive EEG. We defined a personalized search algorithm that combined structural and dynamical information to find resections that maximally decreased seizure propagation for a given resection size. The optimal resection for each patient was defined as the smallest resection leading to at least a 90% reduction in seizure propagation. The individualized model reproduced the basic aspects of seizure propagation for 9 out of 10 patients when using the resection area as the origin of epidemic spreading, and for 10 out of 10 patients with an alternative definition of the seed region. We found that, for 7 patients, the optimal resection was smaller than the resection area, and for 4 patients we also found that a resection smaller than the resection area could lead to a 100% decrease in propagation. Moreover, for two cases these alternative resections included nodes outside the resection area. Epidemic spreading models fitted with patient specific data can capture the fundamental aspects of clinically observed seizure propagation, and can be used to test virtual resections in silico. Combined with optimization algorithms, smaller or alternative resection strategies, that are individually targeted for each patient, can be determined with the ultimate goal to improve surgery outcome. MEG-based networks can provide a good approximation of structural connectivity for computational models of seizure propagation, and facilitate their clinical use.


Assuntos
Epilepsia , Magnetoencefalografia , Encéfalo/cirurgia , Eletroencefalografia , Epilepsia/cirurgia , Humanos , Imageamento por Ressonância Magnética , Convulsões/cirurgia , Resultado do Tratamento
6.
Sci Rep ; 11(1): 19025, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561483

RESUMO

The success of epilepsy surgery in patients with refractory epilepsy depends upon correct identification of the epileptogenic zone (EZ) and an optimal choice of the resection area. In this study we developed individualized computational models based upon structural brain networks to explore the impact of different virtual resections on the propagation of seizures. The propagation of seizures was modelled as an epidemic process [susceptible-infected-recovered (SIR) model] on individual structural networks derived from presurgical diffusion tensor imaging in 19 patients. The candidate connections for the virtual resection were all connections from the clinically hypothesized EZ, from which the seizures were modelled to start, to other brain areas. As a computationally feasible surrogate for the SIR model, we also removed the connections that maximally reduced the eigenvector centrality (EC) (large values indicate network hubs) of the hypothesized EZ, with a large reduction meaning a large effect. The optimal combination of connections to be removed for a maximal effect were found using simulated annealing. For comparison, the same number of connections were removed randomly, or based on measures that quantify the importance of a node or connection within the network. We found that 90% of the effect (defined as reduction of EC of the hypothesized EZ) could already be obtained by removing substantially less than 90% of the connections. Thus, a smaller, optimized, virtual resection achieved almost the same effect as the actual surgery yet at a considerably smaller cost, sparing on average 27.49% (standard deviation: 4.65%) of the connections. Furthermore, the maximally effective connections linked the hypothesized EZ to hubs. Finally, the optimized resection was equally or more effective than removal based on structural network characteristics both regarding reducing the EC of the hypothesized EZ and seizure spreading. The approach of using reduced EC as a surrogate for simulating seizure propagation can suggest more restrictive resection strategies, whilst obtaining an almost optimal effect on reducing seizure propagation, by taking into account the unique topology of individual structural brain networks of patients.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Epilepsia/cirurgia , Procedimentos Neurocirúrgicos/métodos , Adulto , Encéfalo/patologia , Imagem de Tensor de Difusão , Epilepsia/diagnóstico por imagem , Epilepsia/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
7.
Netw Neurosci ; 3(4): 969-993, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637334

RESUMO

Clinical network neuroscience, the study of brain network topology in neurological and psychiatric diseases, has become a mainstay field within clinical neuroscience. Being a multidisciplinary group of clinical network neuroscience experts based in The Netherlands, we often discuss the current state of the art and possible avenues for future investigations. These discussions revolve around questions like "How do dynamic processes alter the underlying structural network?" and "Can we use network neuroscience for disease classification?" This opinion paper is an incomplete overview of these discussions and expands on ten questions that may potentially advance the field. By no means intended as a review of the current state of the field, it is instead meant as a conversation starter and source of inspiration to others.

8.
Neuroimage Clin ; 19: 758-766, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30009129

RESUMO

In some patients with medically refractory epilepsy, EEG with intracerebrally placed electrodes (stereo-electroencephalography, SEEG) is needed to locate the seizure onset zone (SOZ) for successful epilepsy surgery. SEEG has limitations and entails risk of complications because of its invasive character. Non-invasive magnetoencephalography virtual electrodes (MEG-VEs) may overcome SEEG limitations and optimize electrode placement making SOZ localization safer. Our purpose was to assess whether interictal activity measured by MEG-VEs and SEEG at identical anatomical locations were comparable, and whether MEG-VEs activity properties could determine the location of a later resected brain area (RA) as an approximation of the SOZ. We analyzed data from nine patients who underwent MEG and SEEG evaluation, and surgery for medically refractory epilepsy. MEG activity was retrospectively reconstructed using beamforming to obtain VEs at the anatomical locations corresponding to those of SEEG electrodes. Spectral, functional connectivity and functional network properties were obtained for both, MEG-VEs and SEEG time series, and their correlation and reliability were established. Based on these properties, the approximation of the SOZ was characterized by the differences between RA and non-RA (NRA). We found significant positive correlation and reliability between MEG-VEs and SEEG spectral measures (particularly in delta [0.5-4 Hz], alpha2 [10-13 Hz], and beta [13-30 Hz] bands) and broadband functional connectivity. Both modalities showed significantly slower activity and a tendency towards increased broadband functional connectivity in the RA compared to the NRA. Our findings show that spectral and functional connectivity properties of non-invasively obtained MEG-VEs match those of invasive SEEG recordings, and can characterize the SOZ. This suggests that MEG-VEs might be used for optimal SEEG planning and fewer depth electrode implantations, making the localization of the SOZ safer and more successful.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Convulsões/fisiopatologia , Adolescente , Adulto , Eletroencefalografia , Feminino , Humanos , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
9.
Clin Neurophysiol ; 129(6): 1221-1229, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29660580

RESUMO

OBJECTIVE: Kurtosis beamforming is a useful technique for analysing magnetoencephalograpy (MEG) data containing epileptic spikes. However, the implementation varies and few studies measure concordance with subsequently resected areas. We evaluated kurtosis beamforming as a means of localizing spikes in drug-resistant epilepsy patients. METHODS: We retrospectively applied kurtosis beamforming to MEG recordings of 22 epilepsy patients that had previously been analysed using equivalent current dipole (ECD) fitting. Virtual electrodes were placed in the kurtosis volumetric peaks and visually inspected to select a candidate source. The candidate sources were compared to the ECD localizations and resection areas. RESULTS: The kurtosis beamformer produced interpretable localizations in 18/22 patients, of which the candidate source coincided with the resection lobe in 9/13 seizure-free patients and in 3/5 patients with persistent seizures. The sublobar accuracy of the kurtosis beamformer with respect to the resection zone was higher than ECD (56% and 50%, respectively), however, ECD resulted in a higher lobar accuracy (75%, 67%). CONCLUSIONS: Kurtosis beamforming may provide additional value when spikes are not clearly discernible on the sensors and support ECD localizations when dipoles are scattered. SIGNIFICANCE: Kurtosis beamforming should be integrated with existing clinical protocols to assist in localizing the epileptogenic zone.


Assuntos
Encéfalo/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Convulsões/diagnóstico por imagem , Adulto , Encéfalo/cirurgia , Mapeamento Encefálico , Epilepsia Resistente a Medicamentos/cirurgia , Humanos , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Estudos Retrospectivos , Convulsões/cirurgia , Adulto Jovem
10.
Front Neurol ; 9: 647, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131762

RESUMO

Objective: Epilepsy surgery results in seizure freedom in the majority of drug-resistant patients. To improve surgery outcome we studied whether MEG metrics combined with machine learning can improve localization of the epileptogenic zone, thereby enhancing the chance of seizure freedom. Methods: Presurgical interictal MEG recordings of 94 patients (64 seizure-free >1y post-surgery) were analyzed to extract four metrics in source space: delta power, low-to-high-frequency power ratio, functional connectivity (phase lag index), and minimum spanning tree betweenness centrality. At the group level, we estimated the overlap of the resection area with the five highest values for each metric and determined whether this overlap differed between surgery outcomes. At the individual level, those metrics were used in machine learning classifiers (linear support vector machine (SVM) and random forest) to distinguish between resection and non-resection areas and between surgery outcome groups. Results: The highest values, for all metrics, overlapped with the resection area in more than half of the patients, but the overlap did not differ between surgery outcome groups. The classifiers distinguished the resection areas from non-resection areas with 59.94% accuracy (95% confidence interval: 59.67-60.22%) for SVM and 60.34% (59.98-60.71%) for random forest, but could not differentiate seizure-free from not seizure-free patients [43.77% accuracy (42.08-45.45%) for SVM and 49.03% (47.25-50.82%) for random forest]. Significance: All four metrics localized the resection area but did not distinguish between surgery outcome groups, demonstrating that metrics derived from interictal MEG correspond to expert consensus based on several presurgical evaluation modalities, but do not yet localize the epileptogenic zone. Metrics should be improved such that they correspond to the resection area in seizure-free patients but not in patients with persistent seizures. It is important to test such localization strategies at an individual level, for example by using machine learning or individualized models, since surgery is individually tailored.

11.
Clin Neurophysiol ; 127(7): 2581-91, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27291877

RESUMO

OBJECTIVE: Previous studies have associated network hubs and epileptiform activity, such as spikes and high frequency oscillations (HFOs), with the epileptogenic zone. The epileptogenic zone is approximated by the area that generates interictal epileptiform activity: the irritative zone. Our aim was to determine the relation between network hubs and the irritative zone. METHODS: Interictal resting-state MEG recordings of 12 patients with refractory epilepsy were analysed. Beamformer-based virtual electrodes were calculated at 70 locations around the epileptic spikes (irritative zone) and in the contralateral hemisphere. Spikes and HFOs were marked in all virtual electrodes. A minimum spanning tree network was generated based on functional connectivity (phase lag index; PLI) between all virtual electrodes to calculate the betweenness centrality, an indicator of hub status of network nodes. RESULTS: Betweenness centrality was low, and PLI was high, in virtual electrodes close to the centre of the irritative zone, and in virtual electrodes with many spikes and HFOs. CONCLUSION: Node centrality increases with distance from brain areas with spikes and HFOs, consistent with the idea that the irritative zone is a functionally isolated part of the epileptic network during the interictal state. SIGNIFICANCE: A new hypothesis about a pathological hub located remotely from the irritative zone and seizure onset zone opens new ways for surgery when epileptogenic areas and eloquent cortex coincide.


Assuntos
Ondas Encefálicas , Epilepsia/fisiopatologia , Magnetoencefalografia , Adolescente , Adulto , Encéfalo/fisiopatologia , Criança , Humanos
12.
Mol Imaging Biol ; 18(5): 788-95, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26920355

RESUMO

PURPOSE: To assess (1) the repeatability and (2) the impact of reconstruction methods and delineation on the repeatability of 105 radiomic features in non-small-cell lung cancer (NSCLC) 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) positron emission tomorgraphy/computed tomography (PET/CT) studies. PROCEDURES: Eleven NSCLC patients received two baseline whole-body PET/CT scans. Each scan was reconstructed twice, once using the point spread function (PSF) and once complying with the European Association for Nuclear Medicine (EANM) guidelines for tumor PET imaging. Volumes of interest (n = 19) were delineated twice, once on PET and once on CT images. RESULTS: Sixty-three features showed an intraclass correlation coefficient ≥ 0.90 independent of delineation or reconstruction. More features were sensitive to a change in delineation than to a change in reconstruction (25 and 3 features, respectively). CONCLUSIONS: The majority of features in NSCLC [(18)F]FDG-PET/CT studies show a high level of repeatability that is similar or better compared to simple standardized uptake value measures.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Fluordesoxiglucose F18/química , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Demografia , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
13.
Mol Imaging Biol ; 16(1): 13-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23807457

RESUMO

PURPOSE: The aim of this study was to assess test-retest variability of various quantitative measures to characterize tracer uptake and/or tracer uptake heterogeneity. PROCEDURES: Two baseline whole-body 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography/computed tomography (CT) scans were acquired in 29 subjects with colorectal carcinoma. Whole liver volumes of interest (VOI) were defined manually on CT. For each VOI, various quantitative measures were determined, e.g., skewness, kurtosis, and the area under a cumulative standardized uptake value-volume histogram (AUC). RESULTS: AUC showed a good reliability (intraclass correlation coefficients (ICC): 0.97) and low test-retest variability (10%). Most other quantitative parameters showed excellent agreement between test and retest values (ICC: 0.78-0.97) and low test-retest variability (<12%), except for kurtosis. Skewness also showed a higher test-retest variability (19%), but good ICC (0.96) and it correlated well with AUC (R (2): 0.90, all others: <0.76). CONCLUSION: This high reproducibility and reliability of AUC warrant further investigation of its use for quantification of tracer uptake heterogeneity.


Assuntos
Neoplasias Colorretais/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Tomografia Computadorizada por Raios X , Área Sob a Curva , Neoplasias Colorretais/diagnóstico por imagem , Feminino , Fluordesoxiglucose F18 , Humanos , Masculino , Pessoa de Meia-Idade
14.
PLoS One ; 9(1): e87167, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489860

RESUMO

OBJECTIVES: Reusing baseline volumes of interest (VOI) by applying non-rigid and to some extent (local) rigid image registration showed good test-retest variability similar to delineating VOI on both scans individually. The aim of the present study was to compare response assessments and classifications based on various types of image registration with those based on (semi)-automatic tumour delineation. METHODS: Baseline (n = 13), early (n = 12) and late (n = 9) response (after one and three cycles of treatment, respectively) whole body [(18)F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (PET/CT) scans were acquired in subjects with advanced gastrointestinal malignancies. Lesions were identified for early and late response scans. VOI were drawn independently on all scans using an adaptive 50% threshold method (A50). In addition, various types of (non-)rigid image registration were applied to PET and/or CT images, after which baseline VOI were projected onto response scans. Response was classified using PET Response Criteria in Solid Tumors for maximum standardized uptake value (SUV(max)), average SUV (SUV(mean)), peak SUV (SUV(peak)), metabolically active tumour volume (MATV), total lesion glycolysis (TLG) and the area under a cumulative SUV-volume histogram curve (AUC). RESULTS: Non-rigid PET-based registration and non-rigid CT-based registration followed by non-rigid PET-based registration (CTPET) did not show differences in response classifications compared to A50 for SUV(max) and SUV(peak), however, differences were observed for MATV, SUV(mean), TLG and AUC. For the latter, these registrations demonstrated a poorer performance for small lung lesions (<2.8 ml), whereas A50 showed a poorer performance when another area with high uptake was close to the target lesion. All methods were affected by lesions with very heterogeneous tracer uptake. CONCLUSIONS: Non-rigid PET- and CTPET-based image registrations may be used to classify response based on SUV(max) and SUV(peak). For other quantitative measures future studies should assess which method is valid for response evaluations by correlating with survival data.


Assuntos
Neoplasias Gastrointestinais/patologia , Tomografia por Emissão de Pósitrons/métodos , Neoplasias Gastrointestinais/terapia , Humanos , Reprodutibilidade dos Testes , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA