Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 33(9): 3989-4001, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447608

RESUMO

Previous studies have demonstrated that chronic brain hypoperfusion (CBH) causes Aß aggregation by upregulating expression of amyloid precursor protein (APP) and ß-site APP cleaving enzyme 1 (BACE1) protein, which is accompanied by cognitive impairment, but the mechanisms are not fully understood. In this study, we evaluated the effect of microRNA on memory impairment in rats induced by CBH. We show here that CBH generated by bilateral common carotid artery occlusion (2VO) significantly decreased the learning and memory ability in rats, as assessed by Morris water maze, and upregulated expression of APP and BACE1 proteins in the hippocampus and cortex of rats, as evaluated by Western blot and immunofluorescence. In reciprocal, qRT-PCR analysis showed that microRNA-195 (miR-195) was downregulated in both the hippocampus and cortex of rats following CBH, and in the plasma of dementia patients. APP and BACE1 proteins were downregulated by miR-195 overexpression, upregulated by miR-195 inhibition, and unchanged by binding-site mutation or miR-masks, indicating that APP and BACE1 are two potential targets for miR-195. Knockdown of endogenous miR-195 by lentiviral vector-mediated overexpression of its antisense molecule (lenti-pre-AMO-miR-195) elicited dementia in rats, whereas overexpression of miR-195 using lenti-pre-miR-195 reduced dementia vulnerability triggered by 2VO. Additionally, chromatin immunoprecipitation analysis showed that NFκB was bound to the promoter region of miR-195 and inhibited its expression. We conclude that miR-195 may play a key role in determining dementia susceptibility in 2VO rats by regulating APP and BACE1 expression at the post-transcriptional level, and exogenous complement of miR-195 may be a potentially valuable anti-dementia approach.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Doenças das Artérias Carótidas/complicações , Demência/etiologia , Regulação da Expressão Gênica/fisiologia , MicroRNAs/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/sangue , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Demência/genética , Demência/patologia , Demência/terapia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Imunoprecipitação , Lipopolissacarídeos/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , MicroRNAs/biossíntese , MicroRNAs/sangue , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Fragmentos de Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transfecção , Quinase Induzida por NF-kappaB
2.
Cell Physiol Biochem ; 33(1): 11-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24401368

RESUMO

BACKGROUND: Aging is associated with the gradual cognitive decline and shows the typical senile plaque formation in the brain, which results from the aggregation of beta amyloid (Aß) peptide following the abnormal proteolytic processing of amyloid precursor protein (APP) by ß-secretase (BACE1) and γ-secretase. Accumulating evidence indicates that several microRNAs (miRNAs) are involved in the Alzheimer's disease (AD) by regulating the expression of APP and BACE1 proteins. However, the cognitive ability and the expression profile of the APP- and BACE1-associated miRNAs in the middle-aged population are largely unknown. METHODS: The learning and memory ability in rats were determined by Morris Water Maze test. The protein levels of APP and BACE1 were detected by western blotting. The quantitative polymerase chain reaction was used to identify the miRNAs levels in forebrain cortex and the hippocampus. RESULTS: Middle-aged rats have declined learning ability without changes in the memory ability, and increased APP and BACE1 protein expression in the forebrain cortex. Computational analysis using Targetscan and Pictar databases reveals that totally 4 predicted miRNAs have conserved binding site with APP, namely miR-106b, -17-5p, -153, -101. All of them showed decreased expression in both the forebrain cortex and hippocampus. Among the 10 predicted miRNAs targeting BACE1, different expression profiles were identified in the forebrain cortex (decreased: miR-9, -19a, -135a, -15b, -16, -195, -29c, -214; increased: miR-124; no change: miR-141) and the hippocampus (decreased: miR-9, -15b, -16, -195, -29c, -124; increased: miR-19a, -135a, -214, -141) in the middle-aged rats compared with the young rats. CONCLUSION: Our results provided the first evidence that middle-aged rats have begun displaying cognitive disability with abnormal expression of APP- and BACE1-related miRNAs in the hippocampus and forebrain cortex.


Assuntos
Envelhecimento/genética , Amiloide/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , MicroRNAs/genética , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Cognição , Perfilação da Expressão Gênica , Masculino , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar
3.
Sheng Li Xue Bao ; 65(4): 370-80, 2013 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-23963068

RESUMO

Neuropeptide Y (NPY), a sympathetic neurotransmitter, is highly associated with baroreflex dysfunction and multiple cardiac diseases such as diabetic myocardiopathy. In the present study, we aimed to explore the role of peripheral NPY Y1 receptor (Y1R) and Y2 receptor (Y2R), which are dominantly present in peripheral cardiovascular control, in baroreflex sensitivity (BRS) of streptozotocin (STZ)-induced diabetic rats. Peripheral Y1R and Y2R were antagonized by specific antagonists (BIBP 3226 and BIIE 0246, respectively) from subcutaneously implanted ALZET mini-osmotic pump in STZ-induced diabetic rats for 4 weeks. Then baseline systolic blood pressure, heart rate, cardiac function, BRS, plasma NPY and lipid levels were evaluated. We found that STZ led to increased plasma NPY and lipid level. And the STZ-increased lipid levels were reduced by BIBP 3226 and BIIE 0246. BIBP 3226 ameliorated the aberrant BRS, but had little effect on the impaired cardiac function of the STZ rats. BIIE 0246 alleviated sodium nitroprusside (SNP)-induced but not phenylephrine (PE)-induced aberrant baroreflex control of heart rate in the STZ rats. In addition, BIIE 0246 alleviated the bradycardia, but further impaired cardiac contractility in the STZ rats. These results suggest that peripheral Y1R and Y2R play different roles in STZ-induced impairment of BRS.


Assuntos
Barorreflexo , Diabetes Mellitus Experimental/tratamento farmacológico , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Animais , Arginina/análogos & derivados , Arginina/farmacologia , Benzazepinas/farmacologia , Pressão Sanguínea , Bradicardia , Diabetes Mellitus Experimental/fisiopatologia , Frequência Cardíaca , Contração Miocárdica , Neuropeptídeo Y/sangue , Ratos , Estreptozocina
4.
Int J Biol Sci ; 11(4): 390-403, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798059

RESUMO

Increased incidence of arrhythmias in women after menopause has been widely documented, which is considered to be related to estrogen (E2) deficiency induced cardiac electrophysiological abnormalities. However, its molecular mechanism remains incompletely clear. In the present study, we found cardiac conduction blockage in post-menopausal rats. Thereafter, the results showed that cardiac gap junctions were impaired and Connexin43 (Cx43) expression was reduced in the myocardium of post-menopausal rats. The phenomenon was also observed in ovariectomized (OVX) rats, which was attenuated by E2 supplement. Further study displayed that microRNA-23a (miR-23a) level was significantly increased in both post-menopausal and OVX rats, which was reversed by daily E2 treatment after OVX. Importantly, forced overexpression of miR-23a led to gap junction impairment and Cx43 downregulation in cultured cardiomyocytes, which was rescued by suppressing miR-23a by transfection of miR-23a specific inhibitory oligonucleotide (AMO-23a). GJA1 was identified as the target gene of miR-23a by luciferase assay and miRNA-masking antisense ODN (miR-Mask) assay. We also found that E2 supplement could reverse cardiac conduction blockage, Cx43 downregulation, gap junction remodeling and miR-23a upregulation in post-menopausal rats. These findings provide the evidence that miR-23a mediated repression of Cx43 participates in estrogen deficiency induced damages of cardiac gap junction, and highlights a new insight into molecular mechanism of post-menopause related arrhythmia at the microRNA level.


Assuntos
Conexina 43/metabolismo , Estrogênios/metabolismo , Junções Comunicantes/metabolismo , MicroRNAs/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Western Blotting , Células Cultivadas , Conexina 43/genética , Estrogênios/deficiência , Estrogênios/farmacologia , Feminino , Imunofluorescência , Junções Comunicantes/efeitos dos fármacos , MicroRNAs/genética , Microscopia Eletrônica de Transmissão , Miocárdio/metabolismo , Pós-Menopausa , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
5.
Cardiovasc Res ; 95(3): 385-93, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22719074

RESUMO

AIMS: The purpose of the present study was to evaluate the effects of overexpression of microRNA-1 (miR-1) on cardiac contractile function and the potential molecular mechanisms. METHODS AND RESULTS: Transgenic (Tg) mice (C57BL/6) for cardiac-specific overexpression of miR-1 driven by the α-myosin heavy chain promoter were generated and identified by real-time reverse-transcription polymerase chain reaction with left ventricular samples. We found an age-dependent decrease in the heart function in Tg mice by pressure-volume loop analysis. Histological analysis and electron microscopy displayed short sarcomeres with the loss of the clear zone and H-zone as well as myofibril fragmentation and deliquescence in Tg mice. Further studies demonstrated miR-1 post-transcriptionally down-regulated the expression of calmodulin (CaM) and cardiac myosin light chain kinase (cMLCK) proteins by targeting the 3'UTRs of MYLK3, CALM1, and CALM2 genes, leading to decreased phosphorylations of myosin light chain 2v (MLC2v) and cardiac myosin binding protein-C (cMyBP-C). Knockdown of miR-1 by locked nucleic acid-modified anti-miR-1 antisense (LNA-antimiR-1) mitigated the adverse changes of cardiac function associated with overexpression of miR-1. CONCLUSION: miR-1 induces adverse structural remodelling to impair cardiac contractile function. Targeting cMLCK and CaM likely underlies the detrimental effects of miR-1 on structural components of muscles related to the contractile machinery. Our study provides the first evidence that miRNAs cause adverse structural remodelling of the heart.


Assuntos
MicroRNAs/metabolismo , Contração Miocárdica/genética , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Regiões 3' não Traduzidas , Fatores Etários , Animais , Animais Recém-Nascidos , Sítios de Ligação , Calmodulina/genética , Calmodulina/metabolismo , Células Cultivadas , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Miócitos Cardíacos/ultraestrutura , Cadeias Pesadas de Miosina/genética , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcômeros/ultraestrutura , Regulação para Cima , Função Ventricular , Miosinas Ventriculares/genética , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA