Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neurosci ; 41(6): 1191-1206, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33328293

RESUMO

The dentate gyrus (DG) controls information flow into the hippocampus and is critical for learning, memory, pattern separation, and spatial coding, while DG dysfunction is associated with neuropsychiatric disorders. Despite its importance, the molecular mechanisms regulating DG neural circuit assembly and function remain unclear. Here, we identify the Rac-GEF Tiam1 as an important regulator of DG development and associated memory processes. In the hippocampus, Tiam1 is predominantly expressed in the DG throughout life. Global deletion of Tiam1 in male mice results in DG granule cells with simplified dendritic arbors, reduced dendritic spine density, and diminished excitatory synaptic transmission. Notably, DG granule cell dendrites and synapses develop normally in Tiam1 KO mice, resembling WT mice at postnatal day 21 (P21), but fail to stabilize, leading to dendrite and synapse loss by P42. These results indicate that Tiam1 promotes DG granule cell dendrite and synapse stabilization late in development. Tiam1 loss also increases the survival, but not the production, of adult-born DG granule cells, possibly because of greater circuit integration as a result of decreased competition with mature granule cells for synaptic inputs. Strikingly, both male and female mice lacking Tiam1 exhibit enhanced contextual fear memory and context discrimination. Together, these results suggest that Tiam1 is a key regulator of DG granule cell stabilization and function within hippocampal circuits. Moreover, based on the enhanced memory phenotype of Tiam1 KO mice, Tiam1 may be a potential target for the treatment of disorders involving memory impairments.SIGNIFICANCE STATEMENT The dentate gyrus (DG) is important for learning, memory, pattern separation, and spatial navigation, and its dysfunction is associated with neuropsychiatric disorders. However, the molecular mechanisms controlling DG formation and function remain elusive. By characterizing mice lacking the Rac-GEF Tiam1, we demonstrate that Tiam1 promotes the stabilization of DG granule cell dendritic arbors, spines, and synapses, whereas it restricts the survival of adult-born DG granule cells, which compete with mature granule cells for synaptic integration. Notably, mice lacking Tiam1 also exhibit enhanced contextual fear memory and context discrimination. These findings establish Tiam1 as an essential regulator of DG granule cell development, and identify it as a possible therapeutic target for memory enhancement.


Assuntos
Dendritos/metabolismo , Giro Denteado/metabolismo , Memória/fisiologia , Neurogênese/fisiologia , Sinapses/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/deficiência , Animais , Dendritos/genética , Giro Denteado/citologia , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Sinapses/genética , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/genética
2.
Nat Genet ; 35(3): 270-6, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14578885

RESUMO

Loss-of-function mutations in RELN (encoding reelin) or PAFAH1B1 (encoding LIS1) cause lissencephaly, a human neuronal migration disorder. In the mouse, homozygous mutations in Reln result in the reeler phenotype, characterized by ataxia and disrupted cortical layers. Pafah1b1(+/-) mice have hippocampal layering defects, whereas homozygous mutants are embryonic lethal. Reln encodes an extracellular protein that regulates layer formation by interacting with VLDLR and ApoER2 (Lrp8) receptors, thereby phosphorylating the Dab1 signaling molecule. Lis1 associates with microtubules and modulates neuronal migration. We investigated interactions between the reelin signaling pathway and Lis1 in brain development. Compound mutant mice with disruptions in the Reln pathway and heterozygous Pafah1b1 mutations had a higher incidence of hydrocephalus and enhanced cortical and hippocampal layering defects. Dab1 and Lis1 bound in a reelin-induced phosphorylation-dependent manner. These data indicate genetic and biochemical interaction between the reelin signaling pathway and Lis1.


Assuntos
Encéfalo/embriologia , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Transdução de Sinais , 1-Alquil-2-acetilglicerofosfocolina Esterase , Animais , Humanos , Camundongos , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso , Proteína Reelina , Serina Endopeptidases
3.
Nat Med ; 10(2): 148-54, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14730359

RESUMO

Inhibition of polyglutamine-induced protein aggregation could provide treatment options for polyglutamine diseases such as Huntington disease. Here we showed through in vitro screening studies that various disaccharides can inhibit polyglutamine-mediated protein aggregation. We also found that various disaccharides reduced polyglutamine aggregates and increased survival in a cellular model of Huntington disease. Oral administration of trehalose, the most effective of these disaccharides, decreased polyglutamine aggregates in cerebrum and liver, improved motor dysfunction and extended lifespan in a transgenic mouse model of Huntington disease. We suggest that these beneficial effects are the result of trehalose binding to expanded polyglutamines and stabilizing the partially unfolded polyglutamine-containing protein. Lack of toxicity and high solubility, coupled with efficacy upon oral administration, make trehalose promising as a therapeutic drug or lead compound for the treatment of polyglutamine diseases. The saccharide-polyglutamine interaction identified here thus provides a new therapeutic strategy for polyglutamine diseases.


Assuntos
Doença de Huntington/tratamento farmacológico , Doença de Huntington/patologia , Peptídeos/metabolismo , Trealose/uso terapêutico , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Morte Celular/fisiologia , Linhagem Celular , Modelos Animais de Doenças , Glucose/administração & dosagem , Glucose/metabolismo , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Fígado/citologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Transgênicos , Atividade Motora/fisiologia , Mioglobina/genética , Mioglobina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
4.
J Neurosci ; 28(41): 10339-48, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18842893

RESUMO

The development of distinct cellular layers and precise synaptic circuits is essential for the formation of well functioning cortical structures in the mammalian brain. The extracellular protein Reelin, through the activation of a core signaling pathway, including the receptors ApoER2 and VLDLR (very low density lipoprotein receptor) and the adapter protein Dab1 (Disabled-1), controls the positioning of radially migrating principal neurons, promotes the extension of dendritic processes in immature forebrain neurons, and affects synaptic transmission. Here we report for the first time that the Reelin signaling pathway promotes the development of postsynaptic structures such as dendritic spines in hippocampal pyramidal neurons. Our data underscore the importance of Reelin as a factor that promotes the maturation of target neuronal populations and the development of excitatory circuits in the postnatal hippocampus. These findings may have implications for understanding the origin of cognitive disorders associated with Reelin deficiency.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Espinhas Dendríticas/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Hipocampo/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/fisiologia , Serina Endopeptidases/metabolismo , Transdução de Sinais/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/deficiência , Células Cultivadas , Espinhas Dendríticas/ultraestrutura , Proteínas da Matriz Extracelular/deficiência , Hipocampo/citologia , Hipocampo/ultraestrutura , Proteínas Relacionadas a Receptor de LDL , Camundongos , Proteínas do Tecido Nervoso/deficiência , Células Piramidais/ultraestrutura , Receptores de LDL/metabolismo , Receptores de Lipoproteínas/metabolismo , Proteínas Recombinantes/metabolismo , Proteína Reelina , Serina Endopeptidases/deficiência , Quinases da Família src/metabolismo
5.
Neuron ; 41(1): 71-84, 2004 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-14715136

RESUMO

Reelin is a secreted glycoprotein that regulates neuronal positioning in cortical brain structures through the VLDLR and ApoER2 receptors and the adaptor protein Dab1. In addition to cellular disorganization, dendrite abnormalities are present in the brain of reeler mice lacking Reelin. It is unclear whether these defects are due primarily to cellular ectopia or the absence of Reelin. Here we examined dendrite development in the hippocampus of normal and mutant mice and in dissociated cultures. We found that dendrite complexity is severely reduced in homozygous mice deficient in Reelin signaling both in vivo and in vitro, and it is also reduced in heterozygous mice in the absence of cellular ectopia. Addition of Reelin interfering antibodies, receptor antagonists, and Dab1 phosphorylation inhibitors prevented dendrite outgrowth from normal neurons, whereas addition of recombinant Reelin rescued the deficit in reeler cultures. Thus, the same signaling pathway controls both neuronal migration and dendrite maturation.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Dendritos/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Hipocampo/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Receptores de LDL/metabolismo , Receptores de Lipoproteínas/metabolismo , Serina Endopeptidases/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Proteínas Relacionadas a Receptor de LDL , Camundongos , Camundongos Knockout , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/fisiologia , Proteína Reelina , Serina Endopeptidases/metabolismo , Transdução de Sinais/fisiologia
6.
Brain Res ; 1140: 75-83, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16996039

RESUMO

The majority of cortical and hippocampal interneurons originate in the subcortical telencephalon and migrate tangentially into pallial regions before settling in various cortical layers. The molecular cues that regulate final positioning of specific interneurons in cortical structures have not yet been identified. The positioning of radially migrating principal neurons of the cortex and hippocampus depends upon Reelin, an extracellular protein expressed near the pial surface during embryonic development that is absent in reeler mutant mice. To determine whether the layer specification of interneurons, like that of principal neurons, requires Reelin, we crossed reeler with transgenic mice that contain Green Fluorescent Protein (GFP)-expressing Inhibitory Neurons (GINs). These neurons express basal forebrain markers Dlx1/2 in normal and reeler mice. In normal mice, GINs express Reelin and are localized to specific layers of the cortex and hippocampus. In reeler mutant mice, we show that GINs migrate normally into the pallium, but fail to acquire proper layer position. Double labeling experiments indicate that the neurochemical profile of these interneurons is not generally altered in reeler mice. However, the extension of their cellular processes is abnormal. Quantitative analysis of GINs in the cortex revealed that they are hypertrophic, bearing longer neuritic branches than normal. Thus, the lack of Reelin signaling results in abnormal positioning and altered morphology of forebrain interneurons.


Assuntos
Dendritos/fisiologia , Interneurônios/citologia , Camundongos Mutantes Neurológicos/anatomia & histologia , Prosencéfalo/anormalidades , Prosencéfalo/citologia , Animais , Animais Recém-Nascidos , Padronização Corporal/fisiologia , Contagem de Células , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Hipocampo/fisiologia , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Transgênicos , Proteína Reelina , Fatores de Transcrição/metabolismo
7.
Dev Cell ; 29(6): 701-15, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24960694

RESUMO

The small GTPase Rac1 orchestrates actin-dependent remodeling essential for numerous cellular processes including synapse development. While precise spatiotemporal regulation of Rac1 is necessary for its function, little is known about the mechanisms that enable Rac1 activators (GEFs) and inhibitors (GAPs) to act in concert to regulate Rac1 signaling. Here, we identify a regulatory complex composed of a Rac-GEF (Tiam1) and a Rac-GAP (Bcr) that cooperate to control excitatory synapse development. Disruption of Bcr function within this complex increases Rac1 activity and dendritic spine remodeling, resulting in excessive synaptic growth that is rescued by Tiam1 inhibition. Notably, EphB receptors utilize the Tiam1-Bcr complex to control synaptogenesis. Following EphB activation, Tiam1 induces Rac1-dependent spine formation, whereas Bcr prevents Rac1-mediated receptor internalization, promoting spine growth over retraction. The finding that a Rac-specific GEF/GAP complex is required to maintain optimal levels of Rac1 signaling provides an important insight into the regulation of small GTPases.


Assuntos
Espinhas Dendríticas/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Proto-Oncogênicas c-bcr/fisiologia , Receptores da Família Eph/metabolismo , Sinapses/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Western Blotting , Eletrofisiologia , Endocitose , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Técnicas Imunoenzimáticas , Imunoprecipitação , Camundongos , Camundongos Knockout , Neuritos/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T
8.
Gastroenterology ; 130(1): 150-64, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16401478

RESUMO

BACKGROUND & AIMS: Glucagon-like peptide-2 (GLP-2) is a nutrient-responsive hormone that exerts diverse actions in the gastrointestinal tract, including enhancing epithelial cell survival and proliferation, mucosal blood flow, and nutrient uptake and suppressing gastric motility and secretion. These actions are mediated by the G-protein-coupled receptor, GLP-2R. Cellular localization of the GLP-2R and the nature of its signaling network in the gut, however, are poorly defined. Thus, our aim was to establish cellular localization of GLP-2R and functional connection to vascular action of GLP-2 in the gut. METHODS: Intestinal cellular GLP-2R localization was determined with real-time, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) of laser capture microdissected subtissue and fluorescence in situ hybridization and also with double and/or triple immunostaining of human and pig tissue using a validated GLP-2R polyclonal antibody. Superior mesenteric arterial blood flow and intestinal eNOS expression and phosphorylation were measured in TPN-fed pigs acutely (4 h) infused with GLP-2. RESULTS: We show that the porcine GLP-2R mRNA was expressed in the villus epithelium and myenteric plexus. GLP-2R protein was co-localized by confocal immunohistochemistry with serotonin in enteroendocrine cells and also with endothelial nitric oxide synthase (eNOS)-expressing and vasoactive intestinal polypeptide-positive enteric neurons. In neonatal pigs, GLP-2 infusion dose-dependently stimulated intestinal blood flow and coordinately upregulated the expression of intestinal eNOS mRNA, protein, and phosphorylation (eNOS-Ser1117). CONCLUSIONS: We conclude that the GLP-2-induced stimulation of blood flow is mediated by vasoactive neurotransmitters that are colocalized with GLP-2R in 2 functionally distinct cell types within the gastrointestinal tract.


Assuntos
Intestino Delgado/irrigação sanguínea , Intestino Delgado/inervação , Receptores de Glucagon/análise , Receptores de Glucagon/fisiologia , Animais , Células Enteroendócrinas/fisiologia , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 2 , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Intestino Delgado/fisiologia , Artérias Mesentéricas/fisiologia , Neurônios/fisiologia , Óxido Nítrico Sintase Tipo III/biossíntese , RNA Mensageiro/biossíntese , Fluxo Sanguíneo Regional , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos , Peptídeo Intestinal Vasoativo/biossíntese
9.
Science ; 301(5633): 649-53, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12893944

RESUMO

Reelin is an extracellular protein that is crucial for layer formation in the embryonic brain. Here, we demonstrate that Reelin functions postnatally to regulate the development of the neuromuscular junction. Reelin is required for motor end-plate maturation and proper nerve-muscle connectivity, and it directly promotes synapse elimination. Unlike layer formation, neuromuscular junction development requires a function of Reelin that is not mediated by Disabled1 or very-low-density lipoprotein receptors and apolipoprotein E receptor 2 receptors but by a distinct mechanism involving its protease activity.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/fisiologia , Sinapses/fisiologia , Potenciais de Ação , Animais , Axônios/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/farmacologia , Meios de Cultivo Condicionados , Diafragma/inervação , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/farmacologia , Proteínas Relacionadas a Receptor de LDL , Camundongos , Camundongos Mutantes Neurológicos , Microscopia Confocal , Microscopia Eletrônica , Placa Motora/ultraestrutura , Neurônios Motores/metabolismo , Músculo Esquelético/inervação , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/ultraestrutura , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Proteína Reelina , Células de Schwann/metabolismo , Serina Endopeptidases , Inibidores de Serina Proteinase/farmacologia , Sulfonas/farmacologia , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA