Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proteomics ; 24(11): e2300094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38343172

RESUMO

Microglia are a specialized population of innate immune cells located in the central nervous system. In response to physiological and pathological changes in their microenvironment, microglia can polarize into pro-inflammatory or anti-inflammatory phenotypes. A dysregulation in the pro-/anti-inflammatory balance is associated with many pathophysiological changes in the brain and nervous system. Therefore, the balance between microglia pro-/anti-inflammatory polarization can be a potential biomarker for the various brain pathologies. A non-invasive method of detecting microglia polarization in patients would have promising clinical applications. Here, we perform proteomic analysis of small extracellular vesicles (sEVs) derived from microglia cells to identify sEVs biomarkers indicative of pro-inflammatory and anti-inflammatory phenotypic changes. sEVs were isolated from microglia cell lines under different inflammatory conditions and analyzed by proteomics by liquid chromatography with mass spectrometry. Our findings provide the potential roles of sEVs that could be related to the pathogenesis of various brain diseases.


Assuntos
Vesículas Extracelulares , Microglia , Proteômica , Microglia/metabolismo , Humanos , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Linhagem Celular , Proteoma/análise , Proteoma/metabolismo , Biomarcadores/metabolismo , Biomarcadores/análise , Inflamação/metabolismo
2.
Small ; 19(10): e2206078, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549674

RESUMO

Novel sonosensitizers with intrinsic characteristics for tumor diagnosis, efficient therapy, and tumor microenvironment regulation are appealing in current sonodynamic therapy. Herein, a manganese (Mn)-layered double hydroxide-based defect-rich nanoplatform is presented as a new type of sono-chemo sensitizer, which allows ultrasound to efficiently trigger reactive oxygen species generation for enhanced sono/chemo-dynamic therapy. Moreover, such a nanoplatform is able to relieve tumor hypoxia and achieve augmented singlet oxygen production via catalyzing endogenous H2 O2 into O2 . On top of these actions, the released Mn2+ ions and immune-modulating agent significantly intensify immune activation and reverse the immunosuppressive tumor microenvironment to the immunocompetent one. Consequently, this nanoplatform exhibits excellent anti-tumor efficacy and effectively suppresses both primary and distant tumor growth, demonstrating a new strategy to functionalize nanoparticles as sono-chemo sensitizers for synergistic combination cancer therapy.


Assuntos
Neoplasias , Hipóxia Tumoral , Neoplasias/terapia , Terapia por Ultrassom , Animais , Camundongos , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Nanopartículas Metálicas
3.
Glycoconj J ; 34(2): 219-227, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28035583

RESUMO

Epithelial-mesenchymal transition (EMT) is a process in tumor progression during which cancer cells undergo dramatic changes acquiring highly invasive properties. In a widespread adoption of TGF-ß-induced EMT model, we have previously observed that expression of bisecting GlcNAc on N-glycans was dramatically decreased. Herein, we performed in vitro studies with the MCF10A cell line. In response to low cell density, MCF10A cells suffered spontaneously morphologic and phenotypic EMT-like changes, including elongated spindle shape, extended out from edge of the cell sheet, cytoskeleton reorganization, vimentin and fibronectin up-regulation, catenins redistribution, and cadherin switching. Moreover, these phenotypic changes were associated with specific N-glycan alterations. Interestingly, the amounts of bisecting GlcNAc structure were declined, by contrast, the formation of ß1-6 GlcNAc branches were obviously up-regulated during the EMT induced by sparse cell conditions. We further investigated N-glycans on the ß1-integrin, which is a good target of some glycosyltransferases. The reactivity with E4-PHA lectin decreased, whereas the staining for L4-PHA lectin, which recognizes branched GlcNAc, increased in sparse cell conditions compared with dense cell conditions. Taken together, these results demonstrated that specific N-glycan alterations are coupled in EMT process and promoted cells migration at a low cell density.


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Polissacarídeos/metabolismo , Linhagem Celular Tumoral , Humanos
4.
Adv Sci (Weinh) ; : e2401818, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885350

RESUMO

Glycosylation is the most common post-translational modification of proteins and regulates a myriad of fundamental biological processes under normal, and pathological conditions. Altered protein glycosylation is linked to malignant transformation, showing distinct glycopatterns that are associated with cancer initiation and progression by regulating tumor proliferation, invasion, metastasis, and therapeutic resistance. The glycopatterns of small extracellular vesicles (sEVs) released by cancer cells are promising candidates for cancer monitoring since they exhibit glycopatterns similar to their cell-of-origin. However, the clinical application of sEV glycans is challenging due to the limitations of current analytical technologies in tracking the trace amounts of sEVs specifically derived from tumors in circulation. Herein, a sEV GLYcan PHenotype (EV-GLYPH) assay that utilizes a microfluidic platform integrated with surface-enhanced Raman scattering for multiplex profiling of sEV glycans in non-small cell lung cancer is clinically validated. For the first time, the EV-GLYPH assay effectively identifies distinct sEV glycan signatures between non-transformed and malignantly transformed lung cells. In a clinical study evaluated on 40 patients, the EV-GLYPH assay successfully differentiates patients with early-stage malignant lung nodules from benign lung nodules. These results reveal the potential to profile sEV glycans for noninvasive diagnostics and prognostics, opening up promising avenues for clinical applications and understanding the role of sEV glycosylation in lung cancer.

5.
Macromol Biosci ; 23(3): e2200463, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36563292

RESUMO

Nowadays, hydrogels-based microneedles (MNs) have attracted a great interest owing to their outstanding qualities for biomedical applications. For the fabrication of hydrogels-based microneedles as tissue engineering scaffolds and drug delivery carriers, various biomaterials have been tested. They are required to feature tunable physiochemical properties, biodegradability, biocompatibility, nonimmunogenicity, high drug loading capacity, and sustained drug release. Among biomaterials, human proteins are the most ideal biomaterials for fabrication of hydrogels-based MNs; however, they are mechanically weak and poorly processible. To the best of the knowledge, there are no reports of xeno-free human protein-based MNs so far. Here, human albumin-based hydrogels and microneedles for tissue engineering and drug delivery by using relatively new processible human serum albumin methacryloyl (HSAMA) are engineered. The resultant HSAMA hydrogels display tunable mechanical properties, biodegradability, and good biocompatibility. Moreover, the xeno-free HSAMA microneedles display a sustained drug release profile and significant mechanical strength to penetrate the model skin. In vitro, they also show good biocompatibility and anticancer efficacy. Sustainable processible human albumin-based biomaterials may be employed as a xeno-free platform in vivo for tissue engineering and drug delivery in clinical trials in the future.


Assuntos
Hidrogéis , Albumina Sérica Humana , Humanos , Hidrogéis/química , Pele/metabolismo , Sistemas de Liberação de Medicamentos , Materiais Biocompatíveis/química , Portadores de Fármacos/metabolismo
6.
Biomater Sci ; 11(6): 2020-2032, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36601679

RESUMO

Cancer cell membranes (CCMs) have emerged as advanced cancer treatment vaccines to boost the immune response against cancer and have shown great potential in cancer immunotherapy. However, the CCM vaccine confronts the challenges of a weak and short immune response, ascribed to the immune escape and low accumulation of the CCM in antigen presentation cells (APCs). To overcome these shortcomings, we devised a "Trojan horse" CCM nano-vaccine delivered by layered double hydroxide (LDH) nanoparticles with mannose targeting and bovine serum albumin (BSA) coating to overcome the immune escape challenge, efficiently boosting the immune response to cancer cells. This "Trojan horse" CCM nano-vaccine, named LGCMB, is constructed by assembling the CCM antigen on CpG-LDH (LG), followed by mannose-BSA coating for the APC target and BSA coating to mask immune-escape protein on the CCM. The in vitro cellular uptake and maturation data have clearly shown that the BSA coating strategy with mannose as a "Trojan horse" efficiently targeted APCs (macrophages and DCs) and effectively inhibited the immune escape of the CCM, competently stimulating the APC maturation. Moreover, LGCMB can migrate to the draining lymph nodes (LNs) and trigger tumor-specific CD8+ T cell responses in vivo. As expected, the LGCMB nano-vaccine significantly suppressed tumor growth in vivo, showing great potential as a precision cancer vaccine.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Animais , Camundongos , Células Dendríticas , Manose/metabolismo , Imunoterapia , Membrana Celular , Neoplasias/terapia , Neoplasias/metabolismo , Camundongos Endogâmicos C57BL
7.
Adv Drug Deliv Rev ; 187: 114360, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35636568

RESUMO

The development of two-dimensional (2D) nanomaterials for cancer therapy has attracted increasing attention due to their high specific surface area, unique ultrathin structure, electronic and photonic properties. For biomedical applications, investigations into the family of 2D materials have been sparked by graphene and its derivatives. Many 2D nanomaterials, including layered double hydroxides, transition metal dichalcogenides, nitrides and carbonitrides, black phosphorus nanosheets, and metal-organic framework nanosheets, are extensively explored as cancer theranostic platforms. In addition to the high drug loading, 2D nanomaterials are featured with improved physiological properties of drugs, prolonged blood circulation, and increased tumor accumulation and bioavailability. As a consequence, 2D nanomaterials have been widely examined in pre-clinical tumor therapy, particularly through the tumor microenvironment (TME) modulation. This review summarizes recent progresses in developing 2D nanomaterials for TME modulating-based cancer diagnosis and therapy. It is anticipated that this review will benefit researchers to obtain a deeper understanding of interactions between 2D nanomaterials and TME components and develop rational and reliable 2D nanomedicines for pre/clinical cancer theranostics.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Nanomedicina , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias/terapia , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
8.
Gels ; 8(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35877489

RESUMO

Drug-induced liver injury (DILI) is a leading cause of attrition in drug development or withdrawal; current animal experiments and traditional 2D cell culture systems fail to precisely predict the liver toxicity of drug candidates. Hence, there is an urgent need for an alternative in vitro model that can mimic the liver microenvironments and accurately detect human-specific drug hepatotoxicity. Here, for the first time we propose the fabrication of an albumin methacryloyl cryogel platform inspired by the liver's microarchitecture via emulating the mechanical properties and extracellular matrix (ECM) cues of liver. Engineered crosslinkable albumin methacryloyl is used as a protein-based building block for fabrication of albumin cryogel in vitro models that can have potential applications in 3D cell culture and drug screening. In this work, protein modification, cryogelation, and liver ECM coating were employed to engineer highly porous three-dimensional cryogels with high interconnectivity, liver-like stiffness, and liver ECM as artificial liver constructs. The resulting albumin-based cryogel in vitro model provided improved cell-cell and cell-material interactions and consequently displayed excellent liver functional gene expression, being conducive to detection of fialuridine (FIAU) hepatotoxicity.

9.
Med Phys ; 38(8): 4556-62, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21928627

RESUMO

PURPOSE: Fast low-angle shot (FLASH) imaging is widely used in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) because it permits fast and accurate T1 measurement in vivo. Suppression of the fat signal is necessary for most FLASH applications; otherwise, fat will appear hyperintense. The fat saturation technique is one popular method to reduce fat images on clinical scanners. However, fat saturation combined with the 3D FLASH sequence in breast DCE-MRI scans results in heavy ghosting artifacts caused by heartbeat. We used simulation and experimental scans to determine the cause of these artifact-enhancement phenomena. METHODS: We simulated imaging of motion in the x, y, and z directions, with and without fat saturation, to investigate the origin of artifacts. Fourier transform (FT) of the whole field of view was used in the simulation, and we assumed that the uniform phantom was static during one TR. The amplitude of each echo was considered a factor in the FT data. Images were reconstructed using FT data from different phantom positions multiplied by the amplitude factor. Phantom experiments and volunteer studies were implemented to verify the conclusion. RESULTS: Both phantom and volunteer results showed artifacts similar to those in simulation images. We found that FLASH sequence without fat saturation is insensitive to motion. Fat saturation radiofrequency pulses placed before each group of echoes disrupted the steady state of the signal amplitude and produced a low-pass filter effect that enhanced the motion artifacts. CONCLUSIONS: We conclude that the low-pass filter effect associated with the fat saturation technique is responsible for dramatically increased motion artifacts.


Assuntos
Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Tecido Adiposo/anatomia & histologia , Artefatos , Fenômenos Biofísicos , Mama/anatomia & histologia , Meios de Contraste , Feminino , Análise de Fourier , Humanos , Aumento da Imagem/métodos , Imageamento Tridimensional/estatística & dados numéricos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Movimento (Física) , Imagens de Fantasmas , Software
10.
Int J Biol Macromol ; 167: 479-490, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33275977

RESUMO

Gelatin methacryloyl (GelMA; GM) contains impurities, including hydrolabile photosensitive methacrylate groups or soluble methacrylic acid (MA), which could be potentially detrimental to its in vitro and in vivo applications. To date, the influence of GM photocurable side chains on the cytotoxicity and ambient structural stability has remained to be investigated. Here, we successfully separated highly substituted decoupled gelatin methacrylamide (DGM) from GM via removing methacrylate impurities in order to evaluate its stability, cell viability, and cell toxicity, compared to GM, DGM plus soluble MA, and soluble MA. The photocurable methacrylate groups in GM were hydrolytically labile in neutral solutions, changing into soluble MA over time; on the other hand, the photocurable methacrylamide groups in DGM remained intact under the same conditions. Soluble MA was found to decrease cell viability in a dose dependent manner and caused severe cell toxicity at above 10 mg/mL. DGM plus MA started to impair cell viability at a 25 mg/mL concentration. DGM exhibited excellent cell viability and little cell toxicity across the treated concentrations (0.1-25 mg/mL). DGM without hydrolabile methacrylate and cytotoxic MA impurities could be a better choice for long term stability and good cell compatibility for bioapplications including bioprinting and cell encapsulation.


Assuntos
Acrilamidas/isolamento & purificação , Gelatina/química , Metacrilatos/isolamento & purificação , Acrilamidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Gelatina/farmacologia , Células Hep G2 , Humanos , Metacrilatos/farmacologia
11.
RSC Adv ; 8(44): 25021-25030, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35542119

RESUMO

The drug 5-HMF (5-hydroxymethylfurfural, C6H6O3) is extensively studied for its antioxidative and anti-inflammatory properties. However, its unstable properties and biotoxicity restrict its use in skin care products and therapy. The present study was aimed at evaluating the potential of three-dimensional dendritic mesoporous silica nanospheres (3D-dendritic MSNs) as a topical carrier system for 5-HMF delivery. The encapsulation of the carrier also enhances the stability of the drug. Based on the results of Brunauer-Emmet-Teller (BET) analysis, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and UV-vis diffuse reflectance spectroscopy, drug delivery systems were successfully fabricated and the loading capacity (LC%) and entrapment efficiency (EE%) were also assessed. In vitro cell tests revealed the outstanding biocompatibility and inoxidizability of 3D-dendritic MSNs. There is no effect on the antioxidant properties of the drug. Therefore, mesoporous silica can be combined with 5-HMF and used as potential antioxidant medicine in cosmetic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA