Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(1): e0162523, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38084960

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes high mortality in piglets, thus posing a serious threat to the world pig industry. Porcine epidemic diarrhea (PED) is related to the imbalance of sodium absorption by small intestinal epithelial cells; however, the etiology of sodium imbalanced diarrhea caused by PEDV remains unclear. Herein, we first proved that PEDV can cause a significant decrease in Na+/H+ exchanger 3 (NHE3) expression on the cell membrane, in a viral dose-dependent manner. Further study showed that the PEDV nucleocapsid (N) protein participates in the regulation of NHE3 activity through interacting with Ezrin. Flame atomic absorption spectroscopy results indicated a serious imbalance in Na+ concentration inside and outside cells following overexpression of PEDV N. Meanwhile, molecular docking technology identified that the small molecule drug Pemetrexed acts on the PEDV N-Ezrin interaction region. It was confirmed that Pemetrexed can alleviate the imbalanced Na+ concentration in IPEC-J2 cells and the diarrhea symptoms of Rongchang pigs caused by PEDV infection. Overall, our data suggest that the interaction between PEDV N and Ezrin reduces the level of phosphorylated Ezrin, resulting in a decrease in the amount of NHE3 protein on the cell membrane. This leads to an imbalance of intracellular and extracellular Na+, which causes diarrhea symptoms in piglets. Pemetrexed is effective in relieving diarrhea caused by PEDV. Our results provide a reference to screen for anti-PEDV targets and to develop drugs to prevent PED.IMPORTANCEPorcine epidemic diarrhea (PED) has caused significant economic losses to the pig industry since its initial outbreak, and the pathogenic mechanism of porcine epidemic diarrhea virus (PEDV) is still under investigation. Herein, we found that the PEDV nucleocapsid protein interacts with Ezrin to regulate Na+/H+ exchanger 3 activity. In addition, we screened out Pemetrexed, a small molecule drug, which can effectively alleviate pig diarrhea caused by PEDV. These results provide support for further exploration of the pathogenesis of PEDV and the development of drugs to prevent PED.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Diarreia/tratamento farmacológico , Diarreia/veterinária , Simulação de Acoplamento Molecular , Proteínas do Nucleocapsídeo/metabolismo , Pemetrexede/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Suínos , Doenças dos Suínos/tratamento farmacológico
2.
J Biol Chem ; 299(3): 102926, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682493

RESUMO

Soluble amyloid-ß oligomers (AßOs) are proposed to instigate and mediate the pathology of Alzheimer's disease, but the mechanisms involved are not clear. In this study, we reported that AßOs can undergo liquid-liquid phase separation (LLPS) to form liquid-like droplets in vitro. We determined that AßOs exhibited an α-helix conformation in a membrane-mimicking environment of SDS. Importantly, SDS is capable of reconfiguring the assembly of different AßOs to induce their LLPS. Moreover, we found that the droplet formation of AßOs was promoted by strong hydrated anions and weak hydrated cations, suggesting that hydrophobic interactions play a key role in mediating phase separation of AßOs. Finally, we observed that LLPS of AßOs can further promote Aß to form amyloid fibrils, which can be modulated by (-)-epigallocatechin gallate. Our study highlights amyloid oligomers as an important entity involved in protein liquid-to-solid phase transition and reveals the regulatory role of LLPS underlying amyloid protein aggregation, which may be relevant to the pathological process of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Transição de Fase , Agregação Patológica de Proteínas , Humanos , Doença de Alzheimer/fisiopatologia , Amiloide/química , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Dodecilsulfato de Sódio/química , Agregação Patológica de Proteínas/fisiopatologia
3.
J Am Chem Soc ; 146(26): 17924-17930, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38900921

RESUMO

Nitroalkanes serve as essential intermediates in the synthesis of pharmaceuticals, agrochemicals, and functional materials. To date, nitroalkanes are mainly prepared from homogeneous catalysts such as noble transition metal catalysts with poor recyclability. Herein, we propose a metal-organic framework-frustrated Lewis pair (MOF-FLP) heterogeneous catalyst for selectively reducing nitroolefins to nitroalkanes under moderate reaction conditions. MOF enrichment effect can significantly improve the catalytic efficiency compared to homogeneous FLP catalysts. Benefiting from the strong interaction between FLP and MOF, the MOF-FLP catalyst exhibits outstanding recyclability. This work not only provides a convenient route for nitroalkane synthesis but also showcases the potential of porous heterogeneous FLP catalysts, offering inspiration for future catalytic design strategies.

4.
J Am Chem Soc ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973199

RESUMO

Deposition of amyloid plaques in the brains of Alzheimer's disease (AD) patients is a hallmark of the disease. AD plaques consist primarily of the beta-amyloid (Aß) peptide but can contain other factors such as lipids, proteoglycans, and chaperones. So far, it is unclear how the cellular environment modulates fibril polymorphism and how differences in fibril structure affect cell viability. The small heat-shock protein (sHSP) alpha-B-Crystallin (αBC) is abundant in brains of AD patients, and colocalizes with Aß amyloid plaques. Using solid-state NMR spectroscopy, we show that the Aß40 fibril seed structure is not replicated in the presence of the sHSP. αBC prevents the generation of a compact fibril structure and leads to the formation of a new polymorph with a dynamic N-terminus. We find that the N-terminal fuzzy coat and the stability of the C-terminal residues in the Aß40 fibril core affect the chemical and thermodynamic stability of the fibrils and influence their seeding capacity. We believe that our results yield a better understanding of how sHSP, such as αBC, that are part of the cellular environment, can affect fibril structures related to cell degeneration in amyloid diseases.

5.
Chemistry ; : e202400277, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888453

RESUMO

Amyloid plaques are a major pathological hallmark involved in Alzheimer's disease and consist of deposits of the amyloid-ß peptide (Aß). The aggregation process of Aß is highly complex, which leads to polymorphous aggregates with different structures. In addition to aberrant aggregation, Aß oligomers can undergo liquid-liquid phase separation and form dynamic condensates. It has been hypothesized that these amyloid liquid droplets affect and modulate amyloid fibril formation. In this review, we briefly introduce the relationship between stress granules and amyloid protein aggregation that is associated with neurodegenerative diseases. Then we highlight the regulatory role of liquid-liquid phase separation in Aß aggregation and discuss the potential relationship between Aß phase transition and aggregation. Furthermore, we summarize the current structures of Aß oligomers and amyloid fibrils, which have been determined using nuclear magnetic resonance and cryo-electron microscopy. The structural variations of Aß aggregates provide an explanation for the different levels of toxicity, shed light on the aggregation mechanism and may pave the way towards structure-based drug design for both clinical diagnosis and treatment.

6.
J Am Chem Soc ; 145(27): 14994-15000, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37384612

RESUMO

Hydrogenated nitrogen heterocyclic compounds play a critical role in the pharmaceutical, polymer, and agrochemical industries. Recent studies on partial hydrogenation of nitrogen heterocyclic compounds have focused on costly and toxic precious metal catalysts. As an important class of main-group catalysts, frustrated Lewis pairs (FLPs) have been widely applied in catalytic hydrogenation reactions. In principle, the combination of FLPs and metal-organic framework (MOF) is anticipated to efficiently enhance the recyclability performance of FLPs; however, the previously studied MOF-FLPs showed low reactivity in the hydrogenation of N-heterocycles compounds. Herein, we offer a novel P/B type MOF-FLP catalyst that was achieved via a solvent-assisted linker incorporation approach to boost catalytic hydrogenation reactions. Using hydrogen gas under moderate pressure, the proposed P/B type MOF-FLP can serve as a highly efficient heterogeneous catalyst for selective hydrogenation of quinoline and indole to tetrahydroquinoline and indoline-type drug compounds in high yield and excellent recyclability.

7.
J Virol ; 96(22): e0147322, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36342433

RESUMO

Transmissible gastroenteritis virus (TGEV) is member of the family Coronaviridae and mainly causes acute diarrhea. TGEV infection is characterized by vomiting, watery diarrhea, and severe dehydration, resulting in high mortality rates in neonatal piglets. TGEV infection symptoms are related to an imbalance of sodium absorption in small intestinal epithelial cells; however, the etiology of sodium imbalance diarrhea caused by TGEV remains unclear. In this study, we performed transcriptomic analysis of intestinal tissues from infected and healthy piglets and observed that the expression of NHE3, encoding Na+/H+ exchanger 3 (NHE3), the main exchanger of electroneutral sodium in intestinal epithelial cells, was significantly reduced upon TGEV infection. We also showed that specific inhibition of intestinal NHE3 activity could lead to the development of diarrhea in piglets. Furthermore, we revealed an interaction between TGEV N protein and NHE3 near the nucleus. The binding of TGEV N to NHE3 directly affected the expression and activity of NHE3 on the cell surface and affected cellular electrolyte absorption, leading to diarrhea. Molecular docking and computer-aided screening techniques were used to screen for the blocker of the interaction between TGEV N and NHE3, which identified irinotecan. We then demonstrated that irinotecan was effective in relieving TGEV-induced diarrhea in piglets. These findings provide new insights into the mechanism of TGEV-induced sodium imbalance diarrhea and could lead to the design of novel antiviral strategies against TGEV. IMPORTANCE A variety of coronaviruses have been found to cause severe diarrhea in hosts, including TGEV; however, the pathogenic mechanism is not clear. Therefore, prompt determination of the mechanism and identification of efficient therapeutic agents are required, both for public health reasons and for economic development. In this study, we demonstrated that NHE3 is the major expressed protein of NHEs in the intestine, and its expression decreased by nearly 70% after TGEV infection. Also, specific inhibition of intestinal NHE3 resulted in severe diarrhea in piglets. This demonstrated that NHE3 plays an important role in TGEV-induced diarrhea. In addition, we found that TGEV N directly regulates NHE3 expression and activity through protein-protein interaction, which is essential to promote diarrhea. Molecular docking and other techniques demonstrated that irinotecan could block the interaction and diarrhea caused by TGEV. Thus, our results provide a basis for the development of novel therapeutic agents against TGEV and guidance for the development of drugs for other diarrhea-causing coronaviruses.


Assuntos
Infecções por Coronavirus , Coronavirus , Vírus da Gastroenterite Transmissível , Animais , Suínos , Vírus da Gastroenterite Transmissível/fisiologia , Trocador 3 de Sódio-Hidrogênio/genética , Trocador 3 de Sódio-Hidrogênio/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Irinotecano , Simulação de Acoplamento Molecular , Diarreia/veterinária , Trocadores de Sódio-Hidrogênio/metabolismo , Coronavirus/metabolismo , Sódio/metabolismo
8.
Mol Phylogenet Evol ; 181: 107704, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36657625

RESUMO

The present study aimed to apply bioinformatic methods to analyze the structure of the S protein of human respiratory coronaviruses, including severe respiratory disease syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), human coronavirus HKU1 (HCoV-HKU1), and severe respiratory disease syndrome coronavirus type 2 (SARS-CoV-2). We predicted and analyzed the physicochemical properties, hydrophilicity and hydrophobicity, transmembrane regions, signal peptides, phosphorylation and glycosylation sites, epitopes, functional domains, and motifs of the S proteins of human respiratory coronaviruses. All four S proteins contain a transmembrane region, which enables them to bind to host cell surface receptors. All four S proteins contain a signal peptide, phosphorylation sites, glycosylation sites, and epitopes. The predicted phosphorylation sites might mediate S protein activation, the glycosylation sites might affect the cellular orientation of the virus, and the predicted epitopes might have implications for the design of antiviral inhibitors. The S proteins of all four viruses have two structural domains, S1 (C-terminal and N-terminal domains) and S2 (homology region 1 and 2). Our bioinformatic analysis of the structural and functional domains of human respiratory coronavirus S proteins provides a basis for future research to develop broad-spectrum antiviral drugs, vaccines, and antibodies.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2 , Filogenia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Biologia Computacional
9.
Nutr J ; 22(1): 33, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422623

RESUMO

BACKGROUND: The Controlling Nutritional Status (CONUT) score has proven to be a potential biomarker for determining the prognosis of patients with various types of cancer. Its value in determining the prognosis of patients with gynecological cancer, however, remains unknown. The present study was a meta-analysis that aimed to evaluate the prognostic and clinicopathological significance of the CONUT score in gynecological cancer. METHODS: The Embase, PubMed, Cochrane Library, Web of Science, and China National Knowledge Infrastructure databases were comprehensively searched through November 22, 2022. A pooled hazard ratio (HR), together with a 95% confidence interval (CI), was used to determine whether the CONUT score had prognostic value in terms of survival outcomes. Using odds ratios (ORs) and 95% CIs, we estimated the relationship between the CONUT score and clinicopathological characteristics of gynecological cancer. RESULTS: We evaluated 6 articles, involving a total of 2,569 cases, in the present study. According to the results of our analyses, higher CONUT scores were significantly correlated with decreased overall survival (OS) (n = 6; HR = 1.52; 95% CI = 1.13-2.04; P = 0.006; I2 = 57.4%; Ph = 0.038) and progression-free survival (PFS) (n = 4; HR = 1.51; 95% CI = 1.25-1.84; P < 0.001; I2 = 0; Ph = 0.682) in gynecological cancer. Moreover, higher CONUT scores were significantly correlated with a histological grade of G3 (n = 3; OR = 1.76; 95% CI = 1.18-2.62; P = 0.006; I2 = 0; Ph = 0.980), a tumor size ≥ 4 cm (n = 2; OR = 1.50; 95% CI = 1.12-2.01; P = 0.007; I2 = 0; Ph = 0.721), and an advanced International Federation of Gynecology and Obstetrics (FIGO) stage (n = 2; OR = 2.52; 95% CI = 1.54-4.11; P < 0.001; I2 = 45.5%; Ph = 0.175). The correlation between the CONUT score and lymph node metastasis, however, was not significant. CONCLUSIONS: Higher CONUT scores were significantly correlated with decreased OS and PFS in gynecological cancer. The CONUT score, therefore, is a promising and cost-effective biomarker for predicting survival outcomes in gynecological cancer.


Assuntos
Neoplasias , Estado Nutricional , Humanos , Prognóstico , Estudos Retrospectivos , Modelos de Riscos Proporcionais
10.
BMC Womens Health ; 22(1): 451, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384588

RESUMO

BACKGROUND: Placement of a levonorgestrel-releasing intrauterine system (LNG-IUS) is an effective treatment for adenomyosis, especially for patients who have severe dysmenorrhea symptoms but a strong desire to preserve fertility. Nonetheless, for patients with adenomyosis accompanied by an enlarged uterus, expulsion of the ring is a troublesome problem. In this study, we sewed and fixed the LNG-IUS in the uterus, which provides a good solution to this problem. METHODS: In this prospective case series approved by the Ethics Committee of Hangzhou Women's Hospital, 12 patients with adenomyosis were successfully enrolled after providing informed consent, and all patients underwent long-term postoperative follow-up. RESULTS: Twelve patients with adenomyosis underwent suture fixation with an LNG-IUS, and during the long-term postoperative follow-up, every patient experienced complete remission of their symptoms: a significant decrease in menstrual flow, relief of dysmenorrhea, and improvement in quality of life. Only one person reported expulsion a year later. CONCLUSION: In patients with adenomyosis suffering from dysmenorrhea or excessive menstrual blood loss, suture fixation of an LNG-IUS using the hysteroscopic cold knife surgery system is a minimally invasive and effective alternative treatment for adenomyosis and decreases the risk of LNG-IUS expulsion.


Assuntos
Adenomiose , Dispositivos Intrauterinos Medicados , Humanos , Feminino , Adenomiose/complicações , Adenomiose/tratamento farmacológico , Adenomiose/cirurgia , Levanogestrel/uso terapêutico , Dismenorreia/etiologia , Dismenorreia/complicações , Qualidade de Vida , Suturas
11.
Angew Chem Int Ed Engl ; 61(11): e202117807, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35020976

RESUMO

The capture of the xenon and krypton from nuclear reprocessing off-gas is essential to the treatment of radioactive waste. Although various porous materials have been employed to capture Xe and Kr, the development of high-performance adsorbents capable of trapping Xe/Kr at very low partial pressure as in the nuclear reprocessing off-gas conditions remains challenging. Herein, we report a self-adjusting metal-organic framework based on multiple weak binding interactions to capture trace Xe and Kr from the nuclear reprocessing off-gas. The self-adjusting behavior of ATC-Cu and its mechanism have been visualized by the in-situ single-crystal X-ray diffraction studies and theoretical calculations. The self-adjusting behavior endows ATC-Cu unprecedented uptake capacities of 2.65 and 0.52 mmol g-1 for Xe and Kr respectively at 0.1 bar and 298 K, as well as the record Xe capture capability from the nuclear reprocessing off-gas. Our work not only provides a benchmark Xe adsorbent but proposes a new route to construct smart materials for efficient separations.

12.
Small ; 17(20): e2007994, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33749108

RESUMO

Rhenium is one of the most valuable elements found in nature, and its capture and recycle are highly desirable for resource recovery. However, the effective and efficient collection of this material from industrial waste remains quite challenging. Herein, a tetraphenylmethane-based cationic polymeric network (CPN-tpm) nanotrap is designed, synthesized, and evaluated for ReO4- recovery. 3D building units are used to construct imidazolium salt-based polymers with positive charges, which yields a record maximum uptake capacity of 1133 mg g-1 for ReO4- collection as well as fast kinetics ReO4- uptake. The sorption equilibrium is reached within 20 min and a kd value of 8.5 × 105 mL g-1 is obtained. The sorption capacity of CPN-tpm remains stable over a wide range of pH values and the removal efficiency exceeds 60% for pH levels below 2. Moreover, CPN-tpm exhibits good recyclability for at least five cycles of the sorption-desorption process. This work provides a new route for constructing a kind of new high-performance polymeric material for rhenium recovery and rhenium-contained industrial wastewater treatment.


Assuntos
Rênio , Ânions , Polímeros , Águas Residuárias
13.
Anesth Analg ; 133(5): 1235-1243, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33350619

RESUMO

BACKGROUND: The intraoperative 15° left-tilt position during cesarean delivery has more recently been questioned regarding its effect on fetal acid-base balance and is a frequent source of complaints by surgeons. We hypothesized that a 30° left-tilt position during surgical preparation could improve the acid-base balance of the fetus compared with the 15° left-tilt or supine position during surgical preparation. METHODS: Women undergoing elective cesarean delivery under combined spinal epidural anesthesia were randomized to a supine position, 15° left-lateral tilt position or 30° left-lateral tilt position; the position was changed to supine before the incision. Anesthetic management was standardized and included fluid loading with 10 mL/kg of normal saline followed by colloid loading. Hypotension (systolic blood pressure [SBP] reduction >20% baseline value or SBP <90 mm Hg) was treated with boluses of phenylephrine or ephedrine according to maternal heart rate. The primary outcome was umbilical arterial blood pH and the secondary outcomes included maternal SBP within 15 minutes after induction of anesthesia, the amount of vasoactive drug administered before end of the surgery, and the incidence of hypotension during cesarean delivery. RESULTS: Seventy-five patients were included. After testing by analysis of variance, there was no significant difference in the umbilical arterial pH among the 3 groups (supine group: 7.31 ± 0.03 vs 15° group: 7.30 ± 0.04 vs 30° group: 7.31 ± 0.02, P = .28). The 30° group required significantly less phenylephrine (P = .007) and ephedrine (P = .005) before the end of surgery than the supine group; however, the only benefit observed in the 15° group was that the mean SBP at 3 minutes after spinal injection was significantly improved compared with the supine group. CONCLUSIONS: Compared with the supine position, the 30° left-tilt position during surgical preparation did not significantly improve the fetal acid-base status, but it significantly reduced the use of phenylephrine and ephedrine and reduced the incidence of hypotension; however, these benefits were not observed in the 15° left-tilt group.


Assuntos
Equilíbrio Ácido-Base , Anestesia Epidural , Anestesia Obstétrica , Raquianestesia , Cesárea , Feto/fisiologia , Posicionamento do Paciente , Adulto , Anestesia Epidural/efeitos adversos , Anestesia Obstétrica/efeitos adversos , Raquianestesia/efeitos adversos , Pressão Sanguínea/efeitos dos fármacos , Cesárea/efeitos adversos , China , Procedimentos Cirúrgicos Eletivos , Feminino , Sangue Fetal/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hipotensão/tratamento farmacológico , Hipotensão/etiologia , Hipotensão/fisiopatologia , Recém-Nascido , Posicionamento do Paciente/efeitos adversos , Gravidez , Decúbito Dorsal , Fatores de Tempo , Resultado do Tratamento , Vasoconstritores/uso terapêutico
14.
Angew Chem Int Ed Engl ; 60(44): 23705-23712, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34428857

RESUMO

Guided by a second-sphere interaction strategy, we fabricated a Tb(III)-based metal-organic framework (MMCF-4) for turn-on sensing of methyl amine with ultra-low detection limit and high turn-on efficiency. MMCF-4 features lanthanide nodes shielded in a nonacoordinate geometry along with secondary coordination spheres that are densely populated with H-bond interacting sites. Nonradiative routes were inhibited by binding-induced rigidification of the ligand on the second coordination sphere, resulting in luminescence amplification. Such remote interacting mechanism involved in the turn-on sensing event was confirmed by single-crystal X-ray diffraction and molecular dynamic simulation studies. The design of both primary and secondary coordination spheres of Tb(III) enabled the first turn-on sensing of organic amines in aqueous conditions. Our work suggests a promising strategy for high-performance turn-on sensing for Ln-MOFs and luminous materials driven by other metal chromophores.

15.
Angew Chem Int Ed Engl ; 60(10): 5283-5288, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33403811

RESUMO

Porous materials with open metal sites have been investigated to separate various gas mixtures. However, open metal sites show the limitation in the separation of some challenging gas mixtures, such as C2 H2 /CO2 . Herein, we propose a new type of ultra-strong C2 H2 nano-trap based on multiple binding interactions to efficiently capture C2 H2 molecules and separate C2 H2 /CO2 mixture. The ultra-strong acetylene nano-trap shows a benchmark Qst of 79.1 kJ mol-1 for C2 H2 , a record high pure C2 H2 uptake of 2.54 mmol g-1 at 1×10-2  bar, and the highest C2 H2 /CO2 selectivity (53.6), making it as a new benchmark material for the capture of C2 H2 and the separation of C2 H2 /CO2 . The locations of C2 H2 molecules within the MOF-based nanotrap have been visualized by the in situ single-crystal X-ray diffraction studies, which also identify the multiple binding sites accountable for the strong interactions with C2 H2 .

16.
J Am Chem Soc ; 142(14): 6690-6697, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32188239

RESUMO

Light-up luminescence sensors have been employed in real-time in situ visual detection of target molecules including volatile organic compounds (VOCs). However, currently employed light-up sensors, which are generally based on the aggregation-induced emission (AIE) or solvent-induced energy transfer effect, exhibit limited sensitivity for light-up detection and poor recycling performances thereby significantly hindering their industrial applications. Inspired by the low-temperature enhanced luminescence phenomenon, we herein propose and show that a guest-lock-induced luminescence enhancement mechanism can be used to realize the ultrafast light-up detection of target VOCs. Through introduction of chlorinated hydrocarbons to lock the molecular vibrations within a designed [Cu4I4]-based metal-organic framework (MOF), luminescence intensity could be enhanced significantly at room temperature. This guest-lock-induced luminescence enhancement is brought about by weak supramolecular interactions between the host framework and the guest molecules, allowing highly sensitive and specific detection of the guest vapor with ultrafast response time (<1 s). Single-crystal X-ray diffraction (SCXRD) analysis of guest molecules-loaded MOFs and density functional theory (DFT) calculations were employed to investigate the host-guest interactions involved in this phenomenon. Moreover, the above MOF sensor successfully achieved real-time detection of a toxic chloroaromatic molecule, chlorobenzene. The guest-lock-induced light-up mechanism opens up a route to discovering high-performance ultrafast light-up luminescent sensors for real-time detection applications.

17.
J Am Chem Soc ; 142(31): 13356-13361, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32697582

RESUMO

Discovering and constructing novel and fancy structures is the goal of many supramolecular chemists. In this work, we propose an assembly strategy based on the synergistic effect of coordination and covalent interactions to construct a set of octahedral supramolecular cages and adjust their degree of distortion. Our strategy innovatively utilizes the addition of sulfur atoms of a metal sulfide synthon, [Et4N][Tp*WS3] (A), to an alkynyl group of a pyridine-containing linker, resulting in a novel vertex with low symmetry, and of Cu(I) ions. By adjusting the length of the linker and the position of the reactive alkynyl group, the control of the deformation degree of the octahedral cages can be realized. These supramolecular cages exhibit enhanced third-order nonlinear optical (NLO) responses. The results offer a powerful strategy to construct novel distorted cage structures as well as control the degree of distortion of supramolecular geometries.

18.
J Am Chem Soc ; 142(2): 700-704, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31870143

RESUMO

To obtain a pure product without the isomer byproducts is a goal that many chemists are pursuing. As one kind of very important synthesis method, the photochemical reaction is simple and straightforward yet low-selective. In this work, a coordination interaction-based oriented synthesis strategy has been proposed to realize the precise stereochemical control of the isomeric cyclic compounds in the photocycloaddition reaction. Through fixing the reactants via coordination interactions, the arrangements and configurations of the reactants can be adjusted, thereby successfully producing all of the related photocycloaddition products without isomer byproducts for the first time. This work not only provides a new route to synthesize the pure cyclic compounds but also expands the application of the photocycloaddition reaction.

19.
Chembiochem ; 21(17): 2495-2502, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32291951

RESUMO

Positron emission tomography (PET) tracer molecules like thioflavin T specifically recognize amyloid deposition in brain tissue by selective binding to hydrophobic or aromatic surface grooves on the ß-sheet surface along the fibril axis. The molecular basis of this interaction is, however, not well understood. We have employed magic angle spinning (MAS) solid-state NMR spectroscopy to characterize Aß-PET tracer complexes at atomic resolution. We established a titration protocol by using bovine serum albumin as a carrier to transfer hydrophobic small molecules to Aß(1-40) fibrillar aggregates. The same Aß(1-40) amyloid fibril sample was employed in subsequent titrations to minimize systematic errors that potentially arise from sample preparation. In the experiments, the small molecules 13 C-methylated Pittsburgh compound B (PiB) as well as a novel Aß tracer based on a diarylbithiazole (DABTA) scaffold were employed. Classical 13 C-detected as well as proton-detected spectra of protonated and perdeuterated samples with back-substituted protons, respectively, were acquired and analyzed. After titration of the tracers, chemical-shift perturbations were observed in the loop region involving residues Gly25-Lys28 and Ile32-Gly33, thus suggesting that the PET tracer molecules interact with the loop region connecting ß-sheets ß1 and ß2 in Aß fibrils. We found that titration of the PiB derivatives suppressed fibril polymorphism and stabilized the amyloid fibril structure.


Assuntos
Doença de Alzheimer/diagnóstico , Amiloide/química , Compostos de Anilina/química , Corantes Fluorescentes/química , Ressonância Magnética Nuclear Biomolecular , Tomografia por Emissão de Pósitrons , Tiazóis/química , Amiloide/metabolismo , Sítios de Ligação , Isótopos de Carbono , Estrutura Molecular
20.
Inorg Chem ; 59(7): 4868-4873, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155053

RESUMO

Noble gases, especially krypton (Kr) and xenon (Xe), are widely applied in diverse fields. Developing new techniques and adsorbents to separate and purify Kr and Xe is in high demand. Herein, we reported a bimetallic metal-organic framework (MOF) (NKMOF-1-Ni) which possesses a narrow pore size (5.36 Å) and ultrahigh stability (e.g., stable in water for 1.5 years). Gas sorption measurements revealed that this MOF possessed much higher uptake for Xe than for Kr, Ar, or N2 at room temperature in all pressure ranges. The calculation of adsorption isosteric heat and Grand Canonical Monte Carlo simulation verified that NKMOF-1-Ni had a stronger interaction with Xe than other tested gases. The results of ideal adsorbed solution theory selectivity and simulated breakthrough further showed that NKMOF-1-Ni had an outstanding separation performance of Xe/Kr, Xe/Ar, and Xe/N2. This study provides important guidance for future research to synthesize ideal sorbents to separate noble gases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA