RESUMO
OSCC is a genomically complicated disease and advancements in the modern era of molecular oncology have enabled researchers to portray near-to-complete resolution of signaling landscape. Over the last two decades, overwhelming proof-of-concept has established mechanistic regulatory role of non-coding RNAs in carcinogenesis, including OSCC. Circular RNAs demonstrate a burgeoning facet of oncology research and molecular biologists are only beginning to appreciate and recognize the significance of circRNAs in the pathogenesis of OSCC. Regulatory roles of non-coding RNAs in the re-shaping of signaling pathways offer plausible strategies for prevention/inhibition of OSCC. Circular RNAs have mechanistic roles in OSCC and "sponge effects" mediated by a wider variety of circRNAs need to be rationally targeted for effective cancer prevention. Phenomenal and cutting-edge research works in different types of animal models will further refine our knowledge for selection of most promising circRNAs as pharmacologically valuable targets.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , RNA Circular/genética , Neoplasias Bucais/genéticaRESUMO
Cancer stem cells (CSC) are a potential cause for recurrence, metastasis, and resistance of tumors to different therapeutic modalities like hormonal radiotherapy and chemotherapy. We investigated two CSC markers (NANOG and CD 133) in normal, hyperplastic endometrium and endometrial carcinoma. A total of 93 formalin-fixed paraffin-embedded tissue blocks were used for immunohistochemical expression of NANOG and CD133 markers. NANOG expression was detected in 88.37% of endometrial carcinoma cases compared to 15% of the normal proliferative endometrium and 60% of hyperplasia cases. In endometrial carcinoma, high NANOG expression was significantly correlated with high grade, deep myometrial invasion, lymph node metastasis, and high stage with p-values (0.009, 0.005, 0.014, and 0.003, respectively). CD133 was positive in 76.74% of endometrial carcinoma cases, and it showed a significant correlation with deep myometrial invasion, positive lymph node, positive lymphovascular invasion, and high stage (p-values 0.003, 0.001, 0.003, and 0.013, respectively). Normal endometrium showed less expression of CD133 (only 5%) than hyperplasia and endometrial carcinoma with a statistically highly significant difference (p less than 0.0001). Hyperplastic cases with atypia expressed higher CD133 than those without atypia (6 out of 12 versus 3 out of 18). However, this difference was not statistically significant (p-value 0.111). The cancer stem cell markers NANOG and CD 133 are expressed in a high percentage in endometrial carcinoma compared to normal and hyperplasia and their expression is positively correlated with the aggressive behavior of the tumor. High expression of these two markers in apparently normal tissue around the tumor and in hyperplastic conditions with atypia suggests the possibility to use NANOG and CD133 expression as a diagnostic marker distinguishing dysplasia from reactive atypia. Therefore, inhibition of these markers can be a promising method to stop the progression of early cancers.