Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Ann Bot ; 133(2): 287-304, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37832038

RESUMO

BACKGROUND AND AIMS: HCO3- can be a major carbon resource for photosynthesis in underwater environments. Here we investigate the underlying mechanism of uptake and membrane transport of HCO3- in submerged leaves of Hygrophila difformis, a heterophyllous amphibious plant. To characterize these mechanisms, we evaluated the sensitivity of underwater photosynthesis to an external carbonic anhydrase (CA) inhibitor and an anion exchanger protein inhibitor, and we attempted to identify components of the mechanism of HCO3- utilization. METHODS: We evaluated the effects of the external CA inhibitor and anion exchanger protein inhibitor on the NaHCO3 response of photosynthetic O2 evolution in submerged leaves of H. difformis. Furthermore, we performed a comparative transcriptomic analysis between terrestrial and submerged leaves. KEY RESULTS: Photosynthesis in the submerged leaves was decreased by both the external CA inhibitor and anion exchanger protein inhibitor, but no additive effect was observed. Among upregulated genes in submerged leaves, two α-CAs, Hdα-CA1 and Hdα-CA2, and one ß-carbonic anhydrase, Hdß-CA1, were detected. Based on their putative amino acid sequences, the α-CAs are predicted to be localized in the apoplastic region. Recombinant Hdα-CA1 and Hdß-CA1 showed dominant CO2 hydration activity over HCO3- dehydration activity. CONCLUSIONS: We propose that the use of HCO3- for photosynthesis in submerged leaves of H. difformis is driven by the cooperation between an external CA, Hdα-CA1, and an unidentified HCO3- transporter.


Assuntos
Anidrases Carbônicas , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Fotossíntese , Ânions/metabolismo , Folhas de Planta/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Dióxido de Carbono/metabolismo
2.
New Phytol ; 237(1): 100-112, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36156265

RESUMO

Seasonal differences in diaspore dispersal of three mangrove species, Kandelia obovata, Bruguiera gymnorrhiza and Rhizophora stylosa, suggest that respiratory energy production and demand may differ as a result of interspecific differences in temperature dependence of growth and maintenance processes during seedling establishment. We analyzed growth, temperature dependencies of respiratory O2 consumption and amounts of respiratory chain enzymes in seedlings of these species grown at various temperatures. Respiration rates measured at the low reference temperature, RREF , were highest in leaves of 15°C-grown K. obovata, whose dispersal occurs in the cold season, while root RREF of 15°C-grown R. stylosa was 60% those of the other species, possibly because of warm conditions during its establishment phase. In leaves and roots of K. obovata and leaves of R. stylosa, the overall activation energy, Eo , changed with growth temperature associated with changes in the ratios of the amount of protein in the two respiratory pathways. However, Eo of seedlings of B. gymnorrhiza, which has a long dispersal phase, were constant and independent of growth temperature. The different temperature responses of seedling respiration and growth among these three species may reflect the seasonal temperature range of seedling dispersal and establishment in each species.


Assuntos
Rhizophoraceae , Plântula , Temperatura , Rhizophoraceae/fisiologia , Folhas de Planta/fisiologia , Respiração
3.
Ann Bot ; 131(3): 423-436, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36579472

RESUMO

BACKGROUND AND AIMS: Evergreen herbaceous species in the deciduous forest understorey maintain their photosystems in long-lived leaves under dynamic seasonal changes in light and temperature. However, in evergreen understorey herbs, it is unknown how photosynthetic electron transport acclimates to seasonal changes in forest understorey environments, and what photoprotection systems function in excess energy dissipation under high-light and low-temperature environments in winter. METHODS: Here, we used Asarum tamaense, an evergreen herbaceous species in the deciduous forest understorey with a single-flush and long-lived leaves, and measured photosynthetic CO2 assimilation and electron transport in leaves throughout the year. The contents of photosynthetic proteins, pigments and primary metabolites were determined from regularly collected leaves. KEY RESULTS: Both the rates of CO2 assimilation and electron transport under saturated light were kept low in summer, but increased in autumn and winter in A. tamaense leaves. Although the contents of photosynthetic proteins including Rubisco did not increase in autumn and winter, the proton motive force and ΔpH across the thylakoid membrane were high in summer and decreased from summer to winter to a great extent. These decreases alleviated the suppression by lumen acidification and increased the electron transport rate in winter. The content and composition of carotenoids changed seasonally, which may affect changes in non-photochemical quenching from summer to winter. Winter leaves accumulated proline and malate, which may support cold acclimation. CONCLUSIONS: In A. tamaense leaves, the increase in photosynthetic electron transport rates in winter was not due to an increase in photosynthetic enzyme contents, but due to the activation of photosynthetic enzymes and/or release of limitation of photosynthetic electron flow. These seasonal changes in the regulation of electron transport and also the changes in several photoprotection systems should support the acclimation of photosynthetic C gain under dynamic environmental changes throughout the year.


Assuntos
Asarum , Asarum/metabolismo , Estações do Ano , Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo
4.
J Plant Res ; 136(2): 201-210, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36536238

RESUMO

Leaf nitrogen (N) level affects not only photosynthetic CO2 assimilation, but also two photosystems of the photosynthetic electron transport. The quantum yield of photosystem II [Y(II)] and the non-photochemical yield due to the donor side limitation of photosystem I [Y(ND)], which denotes the fraction of oxidized P700 (P700+) to total P700, oppositely change depending on leaf N level, and the negative correlation between these two parameters has been reported in leaves of plants cultivated at various N levels in growth chambers. Here, we aimed to clarify whether this correlation is maintained after short-term changes in leaf N level, and what parameters are the most responsive to the changes in leaf N level under field conditions. We cultivated rice varieties at two N fertilization levels in paddy fields, treated additional N fertilization to plants grown at low N, and measured parameters of two photosystems of mature leaves. In rice leaves under low N condition, the Y(ND) increased and the photosynthetic linear electron flow was suppressed. In this situation, the accumulation of P700+ can function as excess energy dissipation. After the N addition, both Y(ND) and Y(II) changed, and the negative correlation between them was maintained. We used a newly-developed device to assess the photosystems. This device detected the similar changes in Y(ND) after the N addition, and the negative correlation between Y(ND) and photosynthetic O2 evolution rates was observed in plants under various N conditions. This study has provided strong field evidence that the Y(ND) largely changes depending on leaf N level, and that the Y(II) and Y(ND) are negatively correlated with each other irrespective of leaf N level, varieties and annual variation. The Y(ND) can stably monitor the leaf N status and the linear electron flow under field conditions.


Assuntos
Oryza , Oryza/metabolismo , Fotossíntese , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/metabolismo
5.
Plant Cell Environ ; 45(1): 133-146, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719799

RESUMO

The temperature dependence of respiration rates and their acclimation to growth temperature vary among species/ecotypes, but the details remain unclear. Here, we compared the temperature dependence of shoot O2 consumption rates among Arabidopsis thaliana ecotypes to clarify how the temperature dependence and their acclimation to temperature differ among ecotypes, and how these differences relate to shoot growth. We examined growth analysis, temperature dependence of O2 consumption rates, and protein amounts of the respiratory chain components in shoots of twelve ecotypes of A. thaliana grown at three different temperatures. The temperature dependence of the O2 consumption rates were fitted to the modified Arrhenius model. The dynamic response of activation energy to measurement temperature was different among growth temperatures, suggesting that the plasticity of respiratory flux to temperatures differs among growth temperatures. The similar values of activation energy at growth temperature among ecotypes suggest that a similar process may determine the O2 consumption rates at the growth temperature in any ecotype. These results suggest that the growth temperature affects not only the absolute rate of O2 consumption but also the plasticity of respiratory flux in response to temperature, supporting the acclimation of shoot growth to various temperatures.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Consumo de Oxigênio , Brotos de Planta/crescimento & desenvolvimento , Aclimatação/fisiologia , Arabidopsis/fisiologia , Ecótipo , Transporte de Elétrons/fisiologia , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Temperatura
6.
Ann Bot ; 129(1): 15-28, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34508635

RESUMO

BACKGROUND AND AIMS: Mangrove plants are mostly found in tropical and sub-tropical tidal flats, and their limited distribution may be related to their responses to growth temperatures. However, the mechanisms underlying these responses have not been clarified. Here, we measured the dependencies of the growth parameters and respiration rates of leaves and roots on growth temperatures in typical mangrove species. METHODS: We grew two typical species of Indo-Pacific mangroves, Bruguiera gymnorrhiza and Rhizophora stylosa, at four different temperatures (15, 20, 25 and 30 °C) by irrigating with fresh water containing nutrients, and we measured growth parameters, chemical composition, and leaf and root O2 respiration rates. We then estimated the construction costs of leaves and roots and the respiration rates required for maintenance and growth. KEY RESULTS: The relative growth rates of both species increased with growth temperature due to changes in physiological parameters such as net assimilation rate and respiration rate rather than to changes in structural parameters such as leaf area ratio. Both species required a threshold temperature for growth (12.2 °C in B. gymnorrhiza and 18.1 °C in R. stylosa). At the low growth temperature, root nitrogen uptake rate was lower in R. stylosa than in B. gymnorrhiza, leading to a slower growth rate in R. stylosa. This indicates that R. stylosa is more sensitive than B. gymnorrhiza to low temperature. CONCLUSIONS: Our results suggest that the mangrove species require a certain warm temperature to ensure respiration rates sufficient for maintenance and growth, particularly in roots. The underground temperature probably limits their growth under the low-temperature condition. The lower sensitivity of B. gymnorrhiza to low temperature shows its potential to adapt to a wider habitat temperature range than R. stylosa. These growth and respiratory features may explain the distribution patterns of the two mangrove species.


Assuntos
Rhizophoraceae , Ecossistema , Folhas de Planta/fisiologia , Respiração , Rhizophoraceae/fisiologia , Temperatura
7.
Ann Bot ; 130(3): 265-283, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35947983

RESUMO

BACKGROUND: Plants invest photosynthates in construction and maintenance of their structures and functions. Such investments are considered costs. These costs are recovered by the CO2 assimilation rate (A) in the leaves, and thus A is regarded as the immediate, short-term benefit. In photosynthesizing leaves, CO2 diffusion from the air to the carboxylation site is hindered by several structural and biochemical barriers. CO2 diffusion from the intercellular air space to the chloroplast stroma is obstructed by the mesophyll resistance. The inverses is the mesophyll conductance (gm). Whether various plants realize an optimal gm, and how much investment is needed for a relevant gm, remain unsolved. SCOPE: This review examines relationships among leaf construction costs (CC), leaf maintenance costs (MC) and gm in various plants under diverse growth conditions. Through a literature survey, we demonstrate a strong linear relationship between leaf mass per area (LMA) and leaf CC. The overall correlation of CC vs. gm across plant phylogenetic groups is weak, but significant trends are evident within specific groups and/or environments. Investment in CC is necessary for an increase in LMA and mesophyll cell surface area (Smes). This allows the leaf to accommodate more chloroplasts, thus increasing A. However, increases in LMA and/or Smes often accompany other changes, such as cell wall thickening, which diminishes gm. Such factors that make the correlations of CC and gm elusive are identified. CONCLUSIONS: For evaluation of the contribution of gm to recover CC, leaf life span is the key factor. The estimation of MC in relation to gm, especially in terms of costs required to regulate aquaporins, could be essential for efficient control of gm over the short term. Over the long term, costs are mainly reflected in CC, while benefits also include ultimate fitness attributes in terms of integrated carbon gain over the life of a leaf, plant survival and reproductive output.


Assuntos
Dióxido de Carbono , Fotossíntese , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Análise Custo-Benefício , Células do Mesofilo , Filogenia , Folhas de Planta/fisiologia
8.
Physiol Plant ; 174(2): e13644, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35112363

RESUMO

The recovery from photoinhibition is much slower in photosystem (PS) I than in PSII; therefore, the susceptibility of PSI to photoinhibition is important with respect to photosynthetic production under special physiological conditions. Previous studies have shown that repetitive short-pulse (rSP) illumination selectively induces PSI photoinhibition. Depending on the growth light intensity or the variety/species of the plant, PSI photoinhibition is different, but the underlying mechanisms remain unknown. Here, we aimed to clarify whether the differences in the susceptibility of PSI to photoinhibition depend on environmental factors or on rice varieties and which physiological properties of the plant are related to this susceptibility. We exposed mature leaves of rice plants to rSP illumination. We examined the effects of elevated CO2 concentration and low N during growth on the susceptibility of PSI to photoinhibition and compared it in 12 different varieties. We fitted the decrease in the quantum yield of PSI during rSP illumination and estimated a parameter indicating susceptibility. Low N level increased susceptibility, whereas elevated CO2 concentration did not. The susceptibility differed among different rice varieties, and many indica varieties showed higher susceptibility than the temperate japonica varieties. Susceptibility was negatively correlated with the total chlorophyll content and N content. However, the decrease in P m ' value, an indicator of damaged PSI, was positively correlated with chlorophyll content. This suggests that in leaves with a larger electron transport capacity, the overall PSI activity may be less susceptible to photoinhibition, but more damaged PSI may accumulate during rSP illumination.


Assuntos
Oryza , Complexo de Proteína do Fotossistema II , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Clorofila , Luz , Oryza/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia
9.
Plant Cell Physiol ; 62(7): 1121-1130, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33576433

RESUMO

Although N levels affect leaf photosynthetic capacity, the effects of N levels on the photochemistry of photosystems II and I (PSII and PSI, respectively) are not well-understood. In the present study, we examined this aspect in rice (Oryza sativa L. 'Hitomebore') plants grown under three different N levels at normal or high temperatures that can occur during rice culture and do not severely suppress photosynthesis. At both growth temperatures, the quantum efficiency of PSII [Y(II)] and the fraction of the primary quinone electron acceptor in its oxidized state were positively correlated with the amount of total leaf-N, whereas the quantum yields of non-photochemical quenching and donor-side limitation of PSI [Y(ND)] were negatively correlated with the amount of total leaf-N. These changes in PSII and PSI parameters were strongly correlated with each other. Growth temperatures scarcely affected these relationships. These results suggest that the photochemistry of PSII and PSI is coordinately regulated primarily depending on the amount of total leaf-N. When excess light energy occurs in low N-acclimated plants, oxidation of the reaction center chlorophyll of PSI is thought to be stimulated to protect PSI from excess light energy. It is also suggested that PSII and PSI normally operate at high temperature used in the present study. In addition, as the relationships between Y(II) and Y(ND) were found to be almost identical to those observed in osmotically stressed rice plants, common regulation is thought to be operative when excess light energy occurs due to different causes.


Assuntos
Nitrogênio/metabolismo , Oryza/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Temperatura Baixa , Temperatura Alta , Oryza/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
10.
New Phytol ; 229(3): 1810-1821, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32984969

RESUMO

Temperature dependence of plant respiratory O2 -consumption has been empirically described by the Arrhenius equation. The slope of the Arrhenius plot (which is proportional to activation energy) sometimes deviates from a constant value. We conducted kinetic model simulations of mitochondrial electron flow dynamics to clarify factors affecting the shape of the Arrhenius plot. We constructed a kinetic model of respiration in which competitive O2 -consumption by the cytochrome pathway (CP) and the alternative pathway (AP) were considered, and we used this model to describe the temperature dependence of respiratory O2 -consumption of Arabidopsis. The model indicated that the electron partitioning and activation energy differences between CP and AP were reflected in the slope and magnitude of the dependent variables of the Arrhenius plot. When the electron partitioning and activation energies of CP and AP were constant with temperature change, our model suggested that the Arrhenius plot would be almost linear. When the electron partitioning or activation energy of CP, or both, rapidly changed with temperature, the Arrhenius plot deviated from linearity, as reported in previous experimental studies. Our simulation analysis quantitatively linked the kinetic model parameters with physiological mechanisms underlying the instantaneous temperature dependence of plant respiration rate.


Assuntos
Arabidopsis , Citocromos , Arabidopsis/metabolismo , Citocromos/metabolismo , Transporte de Elétrons , Cinética , Temperatura
11.
Plant Cell Environ ; 44(2): 598-612, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33099780

RESUMO

Under phosphorus (P) deficiency, Lupinus albus develops cluster roots that allow efficient P acquisition, while L. angustifolius without cluster roots also grows well. Both species are non-mycorrhizal. We quantitatively examined the carbon budgets to investigate the different strategies of these species. Biomass allocation, respiratory rates, protein amounts and carboxylate exudation rates were examined in hydroponically-grown plants treated with low (1 µM; P1) or high (100 µM; P100) P. At P1, L. albus formed cluster roots, and L. angustifolius increased biomass allocation to the roots. The respiratory rates of the roots were faster in L. albus than in L. angustifolius. The protein amounts of the non-phosphorylating alternative oxidase and uncoupling protein were greater in the cluster roots of L. albus at P1 than in the roots at P100, but similar between the P treatments in L. angustifolius roots. At P1, L. albus exuded carboxylates at a faster rate than L. angustifolius. The carbon budgets at P1 were surprisingly similar between the two species, which is attributed to the contrasting root growth and development strategies. L. albus developed cluster roots with rapid respiratory and carboxylate exudation rates, while L. angustifolius developed a larger root system with slow respiratory and exudation rates.


Assuntos
Carbono/metabolismo , Ácidos Carboxílicos/metabolismo , Lupinus/fisiologia , Fósforo/deficiência , Transporte Biológico , Biomassa , Lupinus/anatomia & histologia , Lupinus/crescimento & desenvolvimento , Fósforo/metabolismo , Exsudatos de Plantas/química , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/enzimologia , Respiração
12.
Plant Cell Physiol ; 61(2): 283-295, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31603217

RESUMO

The plant respiratory chain includes the ATP-coupling cytochrome pathway (CP) and ATP-uncoupling alternative oxidase (AOX). Under high-light (HL) conditions, plants experience photoinhibition, leading to a damaged photosystem II (PSII). The respiratory chain is considered to affect PSII maintenance and photosynthetic electron transport under HL conditions. However, the underlying details remain unclear. In this study, we investigated the respiratory chain functions related to PSII maintenance and photosynthetic electron transport in plants exposed to HL stress. We measured the HL-induced decrease in the maximum quantum yield of PSII in the leaves of wild-type and AOX1a-knockout (aox1a) Arabidopsis thaliana plants in which CP was partially inhibited by a complex-III inhibitor. We also calculated PSII photodamage and repair rate constants. Both rate constants changed when CP was partially inhibited in aox1a plants, suggesting that the respiratory chain is related to both processes. Before HL stress, photosynthetic linear electron flow (LEF) decreased when CP was partially inhibited. After HL stress, aox1a in the presence of the CP inhibitor showed significantly decreased rates of LEF. The electron flow downstream from PSII and on the donor side of photosystem I may have been suppressed. The function of respiratory chain is required to maintain the optimal LEF as well as PSII maintenance especially under the HL stress.


Assuntos
Arabidopsis/metabolismo , Transporte de Elétrons/fisiologia , Elétrons , Luz , Membranas Mitocondriais/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Estresse Fisiológico/fisiologia , Proteínas de Arabidopsis/metabolismo , Clorofila , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Oxirredutases , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas
13.
Plant Cell Environ ; 43(9): 2033-2053, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32281116

RESUMO

Phosphorus (P) is an essential mineral nutrient for plants. Nevertheless, excessive P accumulation in leaf mesophyll cells causes necrotic symptoms in land plants; this phenomenon is termed P toxicity. However, the detailed mechanisms underlying P toxicity in plants have not yet been elucidated. This study aimed to investigate the molecular mechanism of P toxicity in rice. We found that under excessive inorganic P (Pi) application, Rubisco activation decreased and photosynthesis was inhibited, leading to lipid peroxidation. Although the defence systems against reactive oxygen species accumulation were activated under excessive Pi application conditions, the Cu/Zn-type superoxide dismutase activities were inhibited. A metabolic analysis revealed that excessive Pi application led to an increase in the cytosolic sugar phosphate concentration and the activation of phytic acid synthesis. These conditions induced mRNA expression of genes that are activated under metal-deficient conditions, although metals did accumulate. These results suggest that P toxicity is triggered by the attenuation of both photosynthesis and metal availability within cells mediated by phytic acid accumulation. Here, we discuss the whole phenomenon of P toxicity, beginning from the accumulation of Pi within cells to death in land plants.


Assuntos
Oryza/metabolismo , Fósforo/toxicidade , Ácido Fítico/metabolismo , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Ascorbato Peroxidases/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/efeitos dos fármacos , Fósforo/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/fisiologia , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
14.
J Plant Res ; 133(3): 343-371, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32185673

RESUMO

Wetland plants can tolerate long-term strict hypoxia and anoxic conditions and the subsequent re-oxidative stress compared to terrestrial plants. During O2 deficiency, both wetland and terrestrial plants use NAD(P)+ and ATP that are produced during ethanol fermentation, sucrose degradation, and major amino acid metabolisms. The oxidation of NADH by non-phosphorylating pathways in the mitochondrial respiratory chain is common in both terrestrial and wetland plants. As the wetland plants enhance and combine these traits especially in their roots, they can survive under long-term hypoxic and anoxic stresses. Wetland plants show two contrasting strategies, low O2 escape and low O2 quiescence strategies (LOES and LOQS, respectively). Differences between two strategies are ascribed to the different signaling networks related to phytohormones. During O2 deficiency, LOES-type plants show several unique traits such as shoot elongation, aerenchyma formation and leaf acclimation, whereas the LOQS-type plants cease their growth and save carbohydrate reserves. Many wetland plants utilize NH4+ as the nitrogen (N) source without NH4+-dependent respiratory increase, leading to efficient respiratory O2 consumption in roots. In contrast, some wetland plants with high O2 supply system efficiently use NO3- from the soil where nitrification occurs. The differences in the N utilization strategies relate to the different systems of anaerobic ATP production, the NO2--driven ATP production and fermentation. The different N utilization strategies are functionally related to the hypoxia or anoxia tolerance in the wetland plants.


Assuntos
Oxigênio/fisiologia , Raízes de Plantas/fisiologia , Plantas , Aclimatação , Organismos Aquáticos , Nitrogênio , Folhas de Planta , Áreas Alagadas
16.
Plant Cell Environ ; 42(4): 1257-1269, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30468514

RESUMO

C3 photosynthesis is often limited by CO2 diffusivity or stomatal (gs ) and mesophyll (gm ) conductances. To characterize effects of stomatal closure induced by either high CO2 or abscisic acid (ABA) application on gm , we examined gs and gm in the wild type (Col-0) and ost1 and slac1-2 mutants of Arabidopsis thaliana grown at 390 or 780 µmol mol-1 CO2 . Stomata of these mutants were reported to be insensitive to both high CO2 and ABA. When the ambient CO2 increased instantaneously, gm decreased in all these plants, whereas gs in ost1 and slac1-2 was unchanged. Therefore, the decrease in gm in response to high CO2 occurred irrespective of the responses of gs . gm was mainly determined by the instantaneous CO2 concentration during the measurement and not markedly by the CO2 concentration during the growth. Exogenous application of ABA to Col-0 caused the decrease in the intercellular CO2 concentration (Ci ). With the decrease in Ci , gm did not increase but decreased, indicating that the response of gm to CO2 and that to ABA are differently regulated and that ABA content in the leaves plays an important role in the regulation of gm .


Assuntos
Ácido Abscísico/farmacologia , Dióxido de Carbono/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estômatos de Plantas/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/fisiologia
17.
Int J Mol Sci ; 20(12)2019 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-31234590

RESUMO

When leaves receive excess light energy, excess reductants accumulate in chloroplasts. It is suggested that some of the reductants are oxidized by the mitochondrial respiratory chain. Alternative oxidase (AOX), a non-energy conserving terminal oxidase, was upregulated in the photosynthetic mutant of Arabidopsis thaliana, pgr5, which accumulated reductants in chloroplast stroma. AOX is suggested to have an important role in dissipating reductants under high light (HL) conditions, but its physiological importance and underlying mechanisms are not yet known. Here, we compared wild-type (WT), pgr5, and a double mutant of AOX1a-knockout plant (aox1a) and pgr5 (aox1a/pgr5) grown under high- and low-light conditions, and conducted physiological analyses. The net assimilation rate (NAR) was lower in aox1a/pgr5 than that in the other genotypes at the early growth stage, while the leaf area ratio was higher in aox1a/pgr5. We assessed detailed mechanisms in relation to NAR. In aox1a/pgr5, photosystem II parameters decreased under HL, whereas respiratory O2 uptake rates increased. Some intermediates in the tricarboxylic acid (TCA) cycle and Calvin cycle decreased in aox1a/pgr5, whereas γ-aminobutyric acid (GABA) and N-rich amino acids increased in aox1a/pgr5. Under HL, AOX may have an important role in dissipating excess reductants to prevent the reduction of photosynthetic electron transport and imbalance in primary metabolite levels.


Assuntos
Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Transporte de Elétrons , Luz , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Proteínas Mitocondriais/metabolismo , Oxirredução , Oxirredutases/metabolismo , Fotossíntese/efeitos da radiação , Proteínas de Plantas/metabolismo , Biomarcadores , Metabolismo Energético , Regulação da Expressão Gênica
18.
Plant Cell Physiol ; 59(3): 637-649, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401364

RESUMO

Respiratory CO2 efflux and O2 uptake rates in leaves change in response to the growth CO2 concentration ([CO2]). The degrees of change vary depending on the responses of cellular processes such as nitrogen (N) assimilation and accumulation of organic acids to growth [CO2]. However, the underlying mechanisms remain unclear. Here, we examined the respiratory characteristics of mature leaves of two rice varieties with different yield capacities at different growth stages under ambient and elevated [CO2] conditions at a free-air CO2 enrichment site. We also examined the effect of increased water temperature on leaf respiration. We measured the rates of CO2 efflux and O2 uptake, and determined N contents, primary metabolite contents and maximal activities of respiratory enzymes. The leaf CO2 efflux rates decreased in plants grown at elevated [CO2] in both varieties, and were higher in high-yielding Takanari than in Koshihikari. The leaf O2 uptake rates showed little change with respect to growth [CO2] and variety. The increased water temperature did not significantly affect the CO2 efflux and O2 uptake rates. The N and amino acid contents were significantly higher in Takanari than in Koshihikari. The enhanced N assimilation in Takanari may have consumed more respiratory NADH, leading to higher CO2 efflux rates. In Koshihikari, the ratio of tricarboxylic acid (TCA) cycle intermediates changed and maximal activities of enzymes in the TCA cycle decreased at elevated [CO2]. Therefore, the decreased rates of CO2 efflux in Koshihikari may be due to the decreased activities of TCA cycle enzymes at elevated [CO2].


Assuntos
Atmosfera/química , Dióxido de Carbono/farmacologia , Oryza/fisiologia , Folhas de Planta/fisiologia , Aminoácidos/metabolismo , Respiração Celular/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Metaboloma , Nitrogênio/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oxigênio/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Temperatura
19.
Plant Physiol ; 172(4): 2176-2189, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27760881

RESUMO

The cyclic electron flow around photosystem I (CEF-PSI) increases ATP/NADPH production in the chloroplast, acting as an energy balance mechanism. Higher export of reducing power from the chloroplast in CEF-PSI mutants has been correlated with higher mitochondrial alternative oxidase (AOX) capacity and protein amount under high-light (HL) conditions. However, in vivo measurements of AOX activity are still required to confirm the exact role of AOX in dissipating the excess of reductant power from the chloroplast. Here, CEF-PSI single and double mutants were exposed to short-term HL conditions in Arabidopsis (Arabidopsis thaliana). Chlorophyll fluorescence, in vivo activities of the cytochrome oxidase (νcyt) and AOX (νalt) pathways, levels of mitochondrial proteins, metabolite profiles, and pyridine nucleotide levels were determined under normal growth and HL conditions. νalt was not increased in CEF-PSI mutants, while AOX capacity was positively correlated with photoinhibition, probably due to a reactive oxygen species-induced increase of AOX protein. The severe metabolic impairment observed in CEF-PSI mutants, as indicated by the increase in photoinhibition and changes in the levels of stress-related metabolites, can explain their lack of νalt induction. By contrast, νcyt was positively correlated with photosynthetic performance. Correlations with metabolite changes suggest that νcyt is coordinated with sugar metabolism and stress-related amino acid synthesis. Furthermore, changes in glycine-serine and NADH-NAD+ ratios were highly correlated to νcyt Taken together, our results suggest that νcyt can act as a sink for the excess of electrons from the chloroplast, probably via photorespiratory glycine oxidation, thus improving photosynthetic performance when νalt is not induced under severe HL stress.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Luz , Complexo de Proteína do Fotossistema I/metabolismo , Arabidopsis/crescimento & desenvolvimento , Respiração Celular/efeitos da radiação , Clorofila/metabolismo , Transporte de Elétrons/efeitos da radiação , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fluorescência , Cromatografia Gasosa-Espectrometria de Massas , Metaboloma/efeitos da radiação , Metabolômica , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Proteínas Mitocondriais/metabolismo , Mutação/genética , Nucleotídeos/metabolismo , Oxirredutases/metabolismo , Fotossíntese/efeitos da radiação , Proteínas de Plantas/metabolismo
20.
Proc Natl Acad Sci U S A ; 111(1): 533-8, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24367097

RESUMO

Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange between plants and the atmosphere in response to light, CO2, and the plant hormone abscisic acid. Light-induced stomatal opening is mediated by at least three key components: the blue light receptor phototropin (phot1 and phot2), plasma membrane H(+)-ATPase, and plasma membrane inward-rectifying K(+) channels. Very few attempts have been made to enhance stomatal opening with the goal of increasing photosynthesis and plant growth, even though stomatal resistance is thought to be the major limiting factor for CO2 uptake by plants. Here, we show that transgenic Arabidopsis plants overexpressing H(+)-ATPase using the strong guard cell promoter GC1 showed enhanced light-induced stomatal opening, photosynthesis, and plant growth. The transgenic plants produced larger and increased numbers of rosette leaves, with ∼42-63% greater fresh and dry weights than the wild type in the first 25 d of growth. The dry weights of total flowering stems of 45-d-old transgenic plants, including seeds, siliques, and flowers, were ∼36-41% greater than those of the wild type. In addition, stomata in the transgenic plants closed normally in response to darkness and abscisic acid. In contrast, the overexpression of phototropin or inward-rectifying K(+) channels in guard cells had no effect on these phenotypes. These results demonstrate that stomatal aperture is a limiting factor in photosynthesis and plant growth, and that manipulation of stomatal opening by overexpressing H(+)-ATPase in guard cells is useful for the promotion of plant growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas/enzimologia , ATPases Translocadoras de Prótons/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Carbono/química , Dióxido de Carbono/química , Membrana Celular/metabolismo , Luz , Fenótipo , Fotossíntese , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Potássio/química , Regiões Promotoras Genéticas , ATPases Translocadoras de Prótons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA