Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur Radiol ; 32(11): 7976-7987, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35394186

RESUMO

OBJECTIVES: To develop and evaluate a deep learning-based algorithm (DLA) for automatic detection of bone metastases on CT. METHODS: This retrospective study included CT scans acquired at a single institution between 2009 and 2019. Positive scans with bone metastases and negative scans without bone metastasis were collected to train the DLA. Another 50 positive and 50 negative scans were collected separately from the training dataset and were divided into validation and test datasets at a 2:3 ratio. The clinical efficacy of the DLA was evaluated in an observer study with board-certified radiologists. Jackknife alternative free-response receiver operating characteristic analysis was used to evaluate observer performance. RESULTS: A total of 269 positive scans including 1375 bone metastases and 463 negative scans were collected for the training dataset. The number of lesions identified in the validation and test datasets was 49 and 75, respectively. The DLA achieved a sensitivity of 89.8% (44 of 49) with 0.775 false positives per case for the validation dataset and 82.7% (62 of 75) with 0.617 false positives per case for the test dataset. With the DLA, the overall performance of nine radiologists with reference to the weighted alternative free-response receiver operating characteristic figure of merit improved from 0.746 to 0.899 (p < .001). Furthermore, the mean interpretation time per case decreased from 168 to 85 s (p = .004). CONCLUSION: With the aid of the algorithm, the overall performance of radiologists in bone metastases detection improved, and the interpretation time decreased at the same time. KEY POINTS: • A deep learning-based algorithm for automatic detection of bone metastases on CT was developed. • In the observer study, overall performance of radiologists in bone metastases detection improved significantly with the aid of the algorithm. • Radiologists' interpretation time decreased at the same time.


Assuntos
Neoplasias Ósseas , Aprendizado Profundo , Humanos , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos , Algoritmos , Tomografia Computadorizada por Raios X , Radiologistas , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário
2.
Sci Rep ; 10(1): 17532, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067538

RESUMO

This study aimed to develop and validate computer-aided diagnosis (CXDx) system for classification between COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy on chest X-ray (CXR) images. From two public datasets, 1248 CXR images were obtained, which included 215, 533, and 500 CXR images of COVID-19 pneumonia patients, non-COVID-19 pneumonia patients, and the healthy samples, respectively. The proposed CADx system utilized VGG16 as a pre-trained model and combination of conventional method and mixup as data augmentation methods. Other types of pre-trained models were compared with the VGG16-based model. Single type or no data augmentation methods were also evaluated. Splitting of training/validation/test sets was used when building and evaluating the CADx system. Three-category accuracy was evaluated for test set with 125 CXR images. The three-category accuracy of the CAD system was 83.6% between COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy. Sensitivity for COVID-19 pneumonia was more than 90%. The combination of conventional method and mixup was more useful than single type or no data augmentation method. In conclusion, this study was able to create an accurate CADx system for the 3-category classification. Source code of our CADx system is available as open source for COVID-19 research.


Assuntos
Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Pneumonia/diagnóstico , Tórax/diagnóstico por imagem , Adulto , Idoso , Automação , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/virologia , Bases de Dados Factuais , Aprendizado Profundo , Diagnóstico por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia/classificação , Pneumonia Viral/virologia , SARS-CoV-2
3.
Comput Biol Med ; 121: 103767, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32339097

RESUMO

BACKGROUND: The purpose of this study was to develop and evaluate an algorithm for bone segmentation on whole-body CT using a convolutional neural network (CNN). METHODS: Bone segmentation was performed using a network based on U-Net architecture. To evaluate its performance and robustness, we prepared three different datasets: (1) an in-house dataset comprising 16,218 slices of CT images from 32 scans in 16 patients; (2) a secondary dataset comprising 12,529 slices of CT images from 20 scans in 20 patients, which were collected from The Cancer Imaging Archive; and (3) a publicly available labelled dataset comprising 270 slices of CT images from 27 scans in 20 patients. To improve the network's performance and robustness, we evaluated the efficacy of three types of data augmentation technique: conventional method, mixup, and random image cropping and patching (RICAP). RESULTS: The network trained on the in-house dataset achieved a mean Dice coefficient of 0.983 ± 0.005 on cross validation with the in-house dataset, and 0.943 ± 0.007 with the secondary dataset. The network trained on the public dataset achieved a mean Dice coefficient of 0.947 ± 0.013 on 10 randomly generated 15-3-9 splits of the public dataset. These results outperform those reported previously. Regarding augmentation technique, the conventional method, RICAP, and a combination of these were effective. CONCLUSIONS: The CNN-based model achieved accurate bone segmentation on whole-body CT, with generalizability to various scan conditions. Data augmentation techniques enabled construction of an accurate and robust model even with a small dataset.


Assuntos
Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Algoritmos , Osso e Ossos/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador
4.
Comput Biol Med ; 126: 104032, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33045649

RESUMO

PURPOSE: To develop and evaluate a three-dimensional (3D) generative model of computed tomography (CT) images of lung nodules using a generative adversarial network (GAN). To guide the GAN, lung nodule size was used. MATERIALS AND METHODS: A public CT dataset of lung nodules was used, from where 1182 lung nodules were obtained. Our proposed GAN model used masked 3D CT images and nodule size information to generate images. To evaluate the generated CT images, two radiologists visually evaluated whether the CT images with lung nodule were true or generated, and the diagnostic ability was evaluated using receiver-operating characteristic analysis and area under the curves (AUC). Then, two models for classifying nodule size into five categories were trained, one using the true and the other using the generated CT images of lung nodules. Using true CT images, the classification accuracy of the sizes of the true lung nodules was calculated for the two classification models. RESULTS: The sensitivity, specificity, and AUC of the two radiologists were respectively as follows: radiologist 1: 81.3%, 37.7%, and 0.592; radiologist 2: 77.1%, 30.2%, and 0.597. For categorization of nodule size, the mean accuracy of the classification model constructed with true CT images was 85% (range 83.2-86.1%), and that with generated CT images was 85% (range 82.2-88.1%). CONCLUSIONS: Our results show that it was possible to generate 3D CT images of lung nodules that could be used to construct a classification model of lung nodule size without true CT images.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Imageamento Tridimensional , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Redes Neurais de Computação , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X
5.
Comput Methods Programs Biomed ; 196: 105711, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32858281

RESUMO

BACKGROUND AND OBJECTIVE: Currently, it is challenging to detect acute ischemic stroke (AIS)-related changes on computed tomography (CT) images. Therefore, we aimed to develop and evaluate an automatic AIS detection system involving a two-stage deep learning model. METHODS: We included 238 cases from two different institutions. AIS-related findings were annotated on each of the 238 sets of head CT images by referring to head magnetic resonance imaging (MRI) images in which an MRI examination was performed within 24 h following the CT scan. These 238 annotated cases were divided into a training set including 189 cases and test set including 49 cases. Subsequently, a two-stage deep learning detection model was constructed from the training set using the You Only Look Once v3 model and Visual Geometry Group 16 classification model. Then, the two-stage model performed the AIS detection process in the test set. To assess the detection model's results, a board-certified radiologist also evaluated the test set head CT images with and without the aid of the detection model. The sensitivity of AIS detection and number of false positives were calculated for the evaluation of the test set detection results. The sensitivity of the radiologist with and without the software detection results was compared using the McNemar test. A p-value of less than 0.05 was considered statistically significant. RESULTS: For the two-stage model and radiologist without and with the use of the software results, the sensitivity was 37.3%, 33.3%, and 41.3%, respectively, and the number of false positives per one case was 1.265, 0.327, and 0.388, respectively. On using the two-stage detection model's results, the board-certified radiologist's detection sensitivity significantly improved (p-value = 0.0313). CONCLUSIONS: Our detection system involving the two-stage deep learning model significantly improved the radiologist's sensitivity in AIS detection.


Assuntos
Isquemia Encefálica , Aprendizado Profundo , AVC Isquêmico , Acidente Vascular Cerebral , Isquemia Encefálica/diagnóstico por imagem , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA