Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 47, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347588

RESUMO

BACKGROUND: Progranulin (PGRN) haploinsufficiency due to progranulin gene (GRN) variants can cause frontotemporal dementia (FTD) with aberrant TAR DNA-binding protein 43 (TDP-43) accumulation. Despite microglial burden with TDP-43-related pathophysiology, direct microglial TDP-43 pathology has not been clarified yet, only emphasized in neuronal pathology. Thus, the objective of this study was to investigate TDP-43 pathology in microglia of patients with PGRN haploinsufficiency. METHODS: To design a human microglial cell model with PGRN haploinsufficiency, monocyte-derived microglia (iMGs) were generated from FTD-GRN patients carrying pathogenic or likely pathogenic variants (p.M1? and p.W147*) and three healthy controls. RESULTS: iMGs from FTD-GRN patients with PGRN deficiency exhibited severe neuroinflammation phenotype and failure to maintain their homeostatic molecular signatures, along with impaired phagocytosis. In FTD-GRN patients-derived iMGs, significant cytoplasmic TDP-43 aggregation and accumulation of lipid droplets with profound lysosomal abnormalities were observed. These pathomechanisms were mediated by complement C1q activation and upregulation of pro-inflammatory cytokines. CONCLUSIONS: Our study provides considerable cellular and molecular evidence that loss-of-function variants of GRN in human microglia can cause microglial dysfunction with abnormal TDP-43 aggregation induced by inflammatory milieu as well as the impaired lysosome. Elucidating the role of microglial TDP-43 pathology in intensifying neuroinflammation in individuals with FTD due to PGRN deficiency and examining consequential effects on microglial dysfunction might yield novel insights into the mechanisms underlying FTD and neurodegenerative disorders.


Assuntos
Demência Frontotemporal , Doença de Pick , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Haploinsuficiência , Lisossomos/metabolismo , Microglia/patologia , Doenças Neuroinflamatórias , Doença de Pick/metabolismo , Progranulinas/genética , Progranulinas/metabolismo
2.
Allergy ; 78(5): 1333-1346, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36789476

RESUMO

BACKGROUND: Over-release of the vasoactive peptide bradykinin (BK) due to mutation in the SERPING1 gene is the leading cause of hereditary angioedema (HAE). BK directly activates endothelial cells and increases vascular permeability by disrupting the endothelial barrier, leading to angioedema affecting face, lips, extremities, gastrointestinal tract, and larynx. Although various pharmacological treatment options for HAE became available during the last decade, they are presently limited and pose a major economic burden on patients. To identify additional therapeutic options for HAE, we evaluated the effect of CU06-1004, an endothelial dysfunction blocker, on BK-induced vascular hyperpermeability and the HAE murine model. METHODS: To investigate the effect of CU06-1004 on BK-induced vascular hyperpermeability in vivo, we pre-administrated WT mice with the drug and then induced vascular leakage through intravenous injection of BK and observed vascular alternation. Then, SERPING1 deficient mice were used for a HAE murine model. For an in vitro model, the HUVEC monolayer was pre-treated with CU06-1004 and then stimulated with BK. RESULTS: Bradykinin disrupted the endothelial barrier and formed interendothelial cell gaps, leading to hyperpermeability in vivo and in vitro. However, CU06-1004 treatment protected the endothelial barrier by suppressing Src and myosin light chain activation via BK and alleviated hyperpermeability. CONCLUSION: Our study shows that CU06-1004 oral administration significantly reduced vascular hyperpermeability in the HAE murine model by protecting the endothelial barrier function against BK stimulation. Therefore, protecting endothelium against BK with CU06-1004 could serve as a potential prophylactic/therapeutic approach for HAE patients.


Assuntos
Angioedemas Hereditários , Animais , Camundongos , Angioedemas Hereditários/tratamento farmacológico , Angioedemas Hereditários/genética , Proteína Inibidora do Complemento C1/genética , Proteína Inibidora do Complemento C1/farmacologia , Bradicinina/farmacologia , Células Endoteliais , Modelos Animais de Doenças , Endotélio
3.
FASEB J ; 33(9): 9842-9857, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31170000

RESUMO

Angiogenesis depends on VEGF-mediated signaling. However, the regulatory mechanisms and functions of individual VEGF receptor 2 (VEGFR2) phosphorylation sites remain unclear. Here, we report that synaptic adhesion-like molecule 4 (SALM4) regulates a specific VEGFR2 phosphorylation site. SALM4 silencing in HUVECs and Salm4 knockout (KO) in lung endothelial cells (ECs) of Salm4-/- mice suppressed phosphorylation of VEGFR2 tyrosine (Y) 1175 (Y1173 in mice) and downstream signaling upon VEGF-A stimulation. However, VEGFR2 phosphorylation at Y951 (Y949 in mice) and Y1214 (Y1212 in mice) remained unchanged. Knockdown and KO of SALM4 inhibited VEGF-A-induced angiogenic functions of ECs. SALM4 depletion reduced endothelial leakage, sprouting, and migratory activities. Furthermore, in an ischemia and reperfusion (I/R) model, brain injury was attenuated in Salm4-/- mice compared with wild-type (WT) mice. In brain lysates after I/R, VEGFR2 phosphorylation at Y949, Y1173, and Y1212 were induced in WT brains, but only Y1173 phosphorylation of VEGFR2 was reduced in Salm4-/- brains. Taken together, our results demonstrate that SALM4 specifically regulates VEGFR2 phosphorylation at Y1175 (Y1173 in mice), thereby fine-tuning VEGF signaling in ECs.-Kim, D. Y., Park, J. A., Kim, Y., Noh, M., Park, S., Lie, E., Kim, E., Kim, Y.-M., Kwon, Y.-G. SALM4 regulates angiogenic functions in endothelial cells through VEGFR2 phosphorylation at Tyr1175.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular Neuronais/genética , Sangue Fetal/citologia , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Leucócitos Mononucleares/fisiologia , Camundongos , Camundongos Knockout , Neovascularização Patológica , Neovascularização Fisiológica , Fosforilação , RNA Mensageiro , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Ann Neurol ; 84(3): 361-373, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30048006

RESUMO

OBJECTIVE: To assess the safety and efficacy of 2 repeated intrathecal injections of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in amyotrophic lateral sclerosis (ALS). METHODS: In a phase 2 randomized controlled trial (NCT01363401), 64 participants with ALS were randomly assigned treatments (1:1) of riluzole alone (control group, n = 31) or combined with 2 BM-MSC injections (MSC group, n = 33). Safety was assessed based on the occurrence of adverse events. The primary efficacy outcome was changes in Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) score from baseline to 4 and 6 months postinjection. Post hoc analysis includes investigation of cerebrospinal fluid biomarkers and long-term survival analysis. RESULTS: Safety rating showed no groupwise difference with absence of serious treatment-related adverse events. Mean changes in ALSFRS-R scores from baseline to 4 and 6 months postinjection were reduced in the MSC group compared with the control group (4 months: 2.98, 95% confidence interval [CI] = 1.48-4.47, p < 0.001; 6 months: 3.38, 95% CI = 1.23-5.54, p = 0.003). The MSC group showed decreased proinflammatory and increased anti-inflammatory cytokines. In good responders, transforming growth factor ß1 significantly showed inverse correlation with monocyte chemoattractant protein-1. There was no significant difference in long-term survival between groups. INTERPRETATION: Repeated intrathecal injections of BM-MSCs demonstrated a possible clinical benefit lasting at least 6 months, with safety, in ALS patients. A plausible action mechanism is that BM-MSCs mediate switching from pro- to anti-inflammatory conditions. A future randomized, double-blind, large-scale phase 3 clinical trial with additional BM-MSC treatments is required to evaluate long-term efficacy and safety. Ann Neurol 2018;84:361-373.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Terapia Baseada em Transplante de Células e Tecidos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Adulto , Idoso , Biomarcadores/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/métodos , Citocinas/metabolismo , Método Duplo-Cego , Feminino , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Pessoa de Meia-Idade
5.
Clin Exp Pharmacol Physiol ; 44(6): 671-679, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28370165

RESUMO

Excessive activation of poly (ADP-ribose) polymerase-1 (PARP-1) is known to develop neuronal apoptosis, necrosis and inflammation after ischaemic brain injury. Therefore, PARP-1 inhibition after ischaemic stroke has been attempted in successful animal studies. The purpose of present work was to develop a novel water soluble PARP-1 inhibitor (JPI-289) and explore its neuroprotective effect on ischaemic injury in an in vitro model. The half-life of JPI-289 after intravenous or oral administration in rats was relatively long (1.4-1.5 hours) with 65.6% bioavailability. The inhibitor strongly inhibited PARP-1 activity (IC50 =18.5 nmol/L) and cellular PAR formation (IC50 =10.7 nmol/L) in the nanomolar range. In rat cortical neuronal cells, JPI-289 did not affect cell viability up to 1 mmol/L as assayed by Trypan blue staining (TBS) and lactate dehydrogenase (LDH) assay. Treatment of JPI-289 for 2 hours after 2 hours of oxygen glucose deprived (OGD) rat cortical neuron attenuated PARP activity and restored ATP and NAD+ levels. Apoptosis-associated molecules such as apoptosis inducing factor (AIF), cytochrome C and cleaved caspase-3 were reduced after JPI-289 treatment in the OGD model. The present findings suggest that the novel PARP-1 inhibitor, JPI-289, is a potential neuroprotective agent which could be useful as a treatment for acute ischaemic stroke.


Assuntos
Encéfalo/citologia , Inibidores Enzimáticos/farmacologia , Naftiridinas/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Naftiridinas/química , Naftiridinas/farmacocinética , Neurônios/citologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Ratos , Transdução de Sinais/efeitos dos fármacos , Solubilidade
6.
Nano Lett ; 14(3): 1426-32, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24527806

RESUMO

Using a macroscopic ensemble of highly enriched (6,5) single-wall carbon nanotubes, combined with high signal-to-noise ratio and time-dependent differential transmission spectroscopy, we have generated vibrational modes in an ultrawide spectral range (10-3000 cm(-1)). A total of 14 modes were clearly resolved and identified, including fundamental modes of A, E1, and E2 symmetries and their combinational modes involving two and three phonons. Through comparison with continuous wave Raman spectra as well as calculations based on an extended tight-binding model, we were able to identify all the observed peaks and determine the frequencies of the individual and combined modes. We provide a full summary of phonon frequencies for (6,5) nanotubes that can serve as a basic reference with which to refine our understanding of nanotube phonon spectra as well as a testbed for new theoretical models.

7.
J Neurochem ; 131(2): 206-18, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24995608

RESUMO

In a previous study, we reported that intrathecal injection of mesenchymal stem cells (MSCs) slowed disease progression in G93A mutant superoxide dismutase1 transgenic mice. In this study, we found that intrathecal MSC administration vastly increased the infiltration of peripheral immune cells into the spinal cord of Amyotrophic lateral sclerosis (ALS) mice (G93A mutant superoxide dismutase1 transgenic). Thus, we investigated the immunomodulatory effect of MSCs on peripheral blood mononuclear cells (PBMCs) in ALS patients, focusing on regulatory T lymphocytes (Treg ; CD4(+) /CD25(high) /FoxP3(+) ) and the mRNA expression of several cytokines (IFN-γ, TNF-α, IL-17, IL-4, IL-10, IL-13, and TGF-ß). Peripheral blood samples were obtained from nine healthy controls (HC) and sixteen patients who were diagnosed with definite or probable ALS. Isolated PBMCs from the blood samples of all subjects were co-cultured with MSCs for 24 or 72 h. Based on a fluorescence-activated cell sorting analysis, we found that co-culture with MSCs increased the Treg /total T-lymphocyte ratio in the PBMCs from both groups according to the co-culture duration. Co-culture of PBMCs with MSCs for 24 h led to elevated mRNA levels of IFN-γ and IL-10 in the PBMCs from both groups. However, after co-culturing for 72 h, although the IFN-γ mRNA level had returned to the basal level in co-cultured HC PBMCs, the IFN-γ mRNA level in co-cultured ALS PBMCs remained elevated. Additionally, the levels of IL-4 and TGF-ß were markedly elevated, along with Gata3 mRNA, a Th2 transcription factor mRNA, in both HC and ALS PBMCs co-cultured for 72 h. The elevated expression of these cytokines in the co-culture supernatant was confirmed via ELISA. Furthermore, we found that the increased mRNA level of indoleamine 2,3-dioxygenase (IDO) in the co-cultured MSCs was correlated with the increase in Treg induction. These findings of Treg induction and increased anti-inflammatory cytokine expression in co-cultured ALS PBMCs provide indirect evidence that MSCs may play a role in the immunomodulation of inflammatory responses when MSC therapy is targeted to ALS patients. We propose the following mechanism for the effect of mesenchymal stem cells (MSCs) administered intrathecally in amyotrophic lateral sclerosis (ALS): MSCs increase infiltration of peripheral immune cells into CNS and skew the infiltrated immune cells toward regulatory T lymphocytes (Treg ) and Th2 lymphocytes. Treg and Th2 secret anti-inflammatory cytokines such as IL-4, IL-10, and TGF-ß. A series of immunomodulatory mechanism provides a new strategy for ALS treatment.


Assuntos
Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/terapia , Imunomodulação/imunologia , Leucócitos Mononucleares/imunologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Adulto , Animais , Técnicas de Cocultura , Feminino , Humanos , Injeções Espinhais , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Linfócitos T Reguladores/imunologia , Adulto Jovem
8.
Stem Cells Transl Med ; 13(4): 309-316, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244235

RESUMO

Amyotrophic lateral sclerosis (ALS) is characterized by selective and progressive neurodegenerative changes in motor neural networks. Given the system complexity, including anatomically distributed sites of degeneration from the motor cortex to the spinal cord and chronic pro-inflammatory conditions, a cell-based therapeutic strategy could be an alternative approach to treating ALS. Lessons from previous mesenchymal stromal/stem cell (MSC) trials in ALS realized the importance of 3 aspects in current and future MSC therapy, including the preparation of MSCs, administration routes and methods, and recipient-related factors. This review briefly describes the current status and future prerequisites for an optimal strategy using bone-marrow-originated MSCs to treat ALS. We suggest mandatory factors in the optimized therapeutic strategy focused on advanced therapy medicinal products produced according to Good Manufacturing Practice, an optimal administration method, the selection of proper patients, and the importance of biomarkers.


Assuntos
Esclerose Lateral Amiotrófica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Esclerose Lateral Amiotrófica/terapia , Medula Óssea , Biomarcadores , Transplante de Células-Tronco Mesenquimais/métodos
9.
J Neurochem ; 127(4): 562-74, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23711227

RESUMO

The main purpose of this study was to evaluate whether donepezil, acetylcholinesterase inhibitor, shown to play a protective role through inhibiting glycogen synthesis kinase-3ß (GSK-3ß) activity, could also exert neuroprotective effects by stimulating protein phosphatase 2A (PP2A) activity in the amyloid-beta (Aß)42-induced neuronal toxicity model of Alzheimer's disease. In Aß42-induced toxic conditions, each PP2A and GSK-3ß activity measured at different times showed time-dependent reverse pattern toward the direction of accelerating neuronal deaths with the passage of time. In addition, donepezil pre-treatment showed dose-dependent stepwise increase of neuronal viability and stimulation of PP2A activity. However, such effects on them were significantly reduced through the depletion of PP2A activity with either okadaic acid or PP2Ac siRNA. In spite of blocked PP2A activity in this Aß42 insult, however, donepezil pretreatment showed additional significant recovering effect on neuronal viability when compared to the value without donepezil. Moreover, donepezil partially recovered its dephosphorylating effect on hyperphosphorylated tau induced by Aß42. This observation led us to assume that additional mechanisms of donepezil, including its inhibitory effect on GSK-3ß activity and/or the activation role of nicotinic acetylcholine receptors (nAChRs), might be involved. Taken together, our results suggest that the neuroprotective effects of donepezil against Aß42-induced neurotoxicity are mediated through activation of PP2A, but its additional mechanisms including regulation of GSK-3ß and nAChRs activity would partially contribute to its effects. We investigated neuroprotective mechanisms of donepezil against Aß42 toxicity: Donepezil increased neuronal viability with reduced p-tau by enhancing PP2A activity. Despite of blocked PP2A activity, donepezil showed additional recovering effect on neuronal viability, which findings led us to assume that additional mechanisms of donepezil including its inhibitory effect on GSK-3ß activity and activating role of nicotinic AChRs might be involved.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Indanos/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/metabolismo , Piperidinas/farmacologia , Proteína Fosfatase 2/metabolismo , Receptores Nicotínicos/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Donepezila , Feminino , Glicogênio Sintase Quinase 3 beta , Masculino , Neurônios/metabolismo , Fragmentos de Peptídeos/toxicidade , Ratos , Ratos Sprague-Dawley
10.
Biochem Biophys Res Commun ; 435(2): 274-81, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23632329

RESUMO

Glycogen synthase kinase-3 (GSK-3) is emerging as a prominent therapeutic target of Alzheimer's disease (AD). A number of studies have been undertaken to develop GSK-3 inhibitors for clinical use. We report two novel GSK-3 inhibitors (C-7a and C-7b) showing good activity and pharmacokinetic (PK) profiles. IC50 of new GSK-3 inhibitors were in the range of 120-130 nM, and they effectively reduced the Aß-oligomers induced neuronal toxicity. Also, new GSK-3 inhibitors decreased the phosphorylated tau at pThr231, pSer396, pThr181, and pSer202, and inhibited the GSK-3 activity against Aß-oligomers induced neuronal cell toxicity. In B6;129-Psen1(tm1Mpm) Tg(APPSwe, tauP301L)1Lfa/Mmjax model of AD, oral administration of C-7a (20 mg/kg, 50 mg/kg) showed increased total arm entries and spontaneous alteration of Y-maze which was regarded as short-term memory. In particular, 50 mg/kg C-7a treated mice significantly decreased the level of phosphorylated tau (Ser396) in brain hippocampus. We suggest that new GSK-3 inhibitor (C-7a) is potential candidates for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Neurônios/enzimologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
12.
Eur J Pharmacol ; 939: 175427, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36509133

RESUMO

Retinal vascular diseases are the leading cause of blindness worldwide. These diseases have common disease mechanisms including vascular endothelial growth factor (VEGF) signaling, hypoxia, and inflammation. Treatment of these diseases with laser therapy, anti-VEGF injections and/or steroids has significantly improved clinical outcomes. However, these strategies do not address the underlying cause of the pathology and may have harmful side effects. Pathological processes that damage retinal vessels result in vascular occlusion and impairment of the barrier properties of retinal endothelial cells, leading to excessive vascular leakage. Therefore, a new therapeutic approach is needed for the treatment of retinal vascular disease. We were able to confirm that oral administration of CU06-1004, an endothelial dysfunction blocker, inhibited retinal vascular leakage induced by vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang2). Interestingly, oral administration of CU06-1004 prevented excessive vascular leakage in the diabetic retinopathy model. In addition, CU06-1004 inhibited angiogenesis and confirmed vascular stabilization in the oxygen-induced retinopathy model and laser-induced CNV model. Taken together, CU06-1004 could be a potential therapeutic agent for the treatment of retinal vascular diseases.


Assuntos
Retinopatia Diabética , Doenças Retinianas , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Permeabilidade Capilar , Células Endoteliais , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/complicações , Doenças Retinianas/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/farmacologia , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/etiologia , Administração Oral
13.
Fluids Barriers CNS ; 20(1): 9, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726154

RESUMO

BACKGROUND: Age-related changes in the cerebrovasculature, including blood-brain barrier (BBB) disruption and vascular dementia, are emerging as potential risks for many neurodegenerative diseases. Therefore, the endothelial cells that constitute the cerebrovasculature may play key roles in preventing brain injury. Our previous study showed that CU06-1004, an endothelial cell dysfunction blocker, prevented vascular leakage, enhanced vascular integrity in ischemic reperfusion injury, and promoted the normalization of tumor vasculature. Here, we evaluated the effects of CU06-1004 on age-related cerebrovascular functional decline in the aged mouse brain. RESULTS: In this study, we investigated the protective effects of CU06-1004 against oxidative stress-induced damage in human brain microvascular endothelial cells (HBMECs). HBMECs were treated with hydrogen peroxide (H2O2) to establish an oxidative stress-induced model of cellular injury. Compared with H2O2 treatment alone, pretreatment of HBMECs with CU06-1004 considerably reduced oxidative stress-induced cytotoxicity, reactive oxygen species generation, senescence-associated ß-galactosidase activity, senescence marker expression, and the expression levels of inflammatory proteins. Based on the observed cytoprotective effects of CU06-1004 in HBMECs, we examined whether CU06-1004 displayed protective effects against cerebrovascular aging in mice. Long-term administration of CU06-1004 alleviated age-associated cerebral microvascular rarefaction and cerebrovascular senescence in the aged mouse brain. CU06-1004 supplementation also reduced the extravasation of plasma IgG by improving BBB integrity in the aged mouse brain, associated with reductions in neuronal injury. A series of behavioral tests also revealed improved motor and cognitive functions in aged mice that received long-term CU06-1004 administration. CONCLUSIONS: These findings suggest that CU06-1004 may represent a promising therapeutic approach for delaying age-related cerebrovascular impairment and improving cognitive function in old age.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Humanos , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Peróxido de Hidrogênio/metabolismo , Envelhecimento , Modelos Animais de Doenças
14.
J Inflamm (Lond) ; 20(1): 13, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024954

RESUMO

BACKGROUND: Acute lung injury (ALI) is a life-threatening condition that fundamentally results from inflammation and edema in the lung. There are no effective treatments available for clinical use. Previously, we found that as a leakage blocker CU06-1004 prevents endothelial barrier disruption and enhances endothelial cell survival under inflammatory conditions. In this study, we aimed to elucidate the effect of CU06-1004 in terms of prevention of inflammation and endothelial dysfunction in an ALI mouse model. METHODS: An ALI model was established that included intraperitoneal administration of LPS. Following LPS administration, survival rates and lung wet/dry ratios were assessed. Histological analysis was performed using hematoxylin and eosin staining. Scanning electron microscopy was used to examine alveolar and capillary morphology. Cytokines such as IL-1ß, IL-6, and TNF-α were analyzed using an ELISA assay of bronchoalveolar lavage fluid (BALF) and serum. Neutrophil infiltration was observed in BALF using Wright-Giemsa staining, and myeloperoxidase (MPO) activity was assessed. Pulmonary vascular leakage was confirmed using Evans-blue dye, and the expression of junctional proteins was evaluated using immunofluorescent staining. Expression of adhesion molecules was observed using immunofluorescence staining. NF-κB activation was determined using immunohistochemistry and western blot analysis. RESULTS: Survival rates and pulmonary edema were ameliorated with CU06-1004 treatment. Administration of CU06-1004 normalized histopathological changes induced by LPS, and alveolar-capillary wall thickening was reduced. Compared with the LPS-challenged group, after CU06-1004 treatment, the infiltration of immune cells was decreased in the BALF, and MPO activity in lung tissue was reduced. Similarly, in the CU06-1004 treatment group, pro-inflammatory cytokines were significantly inhibited in both BALF and serum. Evans-blue leakage was reduced, and the expression of junctional proteins was recovered in the CU06-1004 group. Adhesion molecules were downregulated and NF-κB activation was inhibited after CU06-1004 treatment. CONCLUSIONS: These results suggested that CU06-1004 had a therapeutic effect against LPS-induced ALI via alleviation of the inflammatory response and protection of vascular integrity.

15.
Front Pharmacol ; 14: 1275749, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035024

RESUMO

Inhibition of angiogenesis is considered a promising therapeutic approach for cancer treatment. Our previous genetic research showed that the use of a cell-penetrating peptide to inhibit the pleckstrin homology (PH) domain of 3-phosphoinositide-dependent kinase 1 (PDK1) was a viable approach to suppress pathological angiogenesis. Herein, we synthesized and characterized a novel small molecule, CU05-1189, based on our prior study and present evidence for the first time that this compound possesses antiangiogenic properties both in vitro and in vivo. The computational analysis showed that CU05-1189 can interact with the PH domain of PDK1, and it significantly inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, invasion, and tube formation in human umbilical vein endothelial cells without apparent toxicity. Western blot analysis revealed that the Akt signaling pathway was specifically inhibited by CU05-1189 upon VEGF stimulation, without affecting other VEGF receptor 2 downstream molecules or cytosolic substrates of PDK1, by preventing translocation of PDK1 to the plasma membrane. We also found that CU05-1189 suppressed VEGF-mediated vascular network formation in a Matrigel plug assay. More importantly, CU05-1189 had a good pharmacokinetic profile with a bioavailability of 68%. These results led to the oral administration of CU05-1189, which resulted in reduced tumor microvessel density and growth in a xenograft mouse model. Taken together, our data suggest that CU05-1189 may have great potential and be a promising lead as a novel antiangiogenic agent for cancer treatment.

16.
Mol Neurobiol ; 60(8): 4761-4777, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37154887

RESUMO

Microglia plays a key role in determining the progression of amyotrophic lateral sclerosis (ALS), yet their precise role in ALS has not been identified in humans. This study aimed to identify a key factor related to the functional characteristics of microglia in rapidly progressing sporadic ALS patients using the induced microglia model, although it is not identical to brain resident microglia. After confirming that microglia-like cells (iMGs) induced by human monocytes could recapitulate the main signatures of brain microglia, step-by-step comparative studies were conducted to delineate functional differences using iMGs from patients with slowly progressive ALS [ALS(S), n = 14] versus rapidly progressive ALS [ALS(R), n = 15]. Despite an absence of significant differences in the expression of microglial homeostatic genes, ALS(R)-iMGs preferentially showed defective phagocytosis and an exaggerated pro-inflammatory response to LPS stimuli compared to ALS(S)-iMGs. Transcriptome analysis revealed that the perturbed phagocytosis seen in ALS(R)-iMGs was closely associated with decreased NCKAP1 (NCK-associated protein 1)-mediated abnormal actin polymerization. NCKAP1 overexpression was sufficient to rescue impaired phagocytosis in ALS(R)-iMGs. Post-hoc analysis indicated that decreased NCKAP1 expression in iMGs was correlated with the progression of ALS. Our data suggest that microglial NCKAP1 may be an alternative therapeutic target in rapidly progressive sporadic ALS.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Microglia/metabolismo , Fagocitose/genética , Monócitos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
17.
Phytomedicine ; 94: 153794, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775362

RESUMO

BACKGROUND: Moutan radicis cortex (MRC) and Cinnamomi ramulus (CR) are commonly used in eastern Asian traditional medicine to treat various diseases including cerebrovascular and cardiovascular, and have wide spectrum of pharmacological activities. However, the effect against laser-induced choroidal neovascularization (CNV) of extract of MRC and CR (1:1) (MRCCR) has not yet been studied. PURPOSE: Our aim was to investigate the inhibitory effect of MRCCR on pathological CNV in laser-treated Brown-Norway (BN) rats. METHODS: MRCCR (60, 90 mg/kg) was orally administered twice per day for 15 days from the day of CNV formation in laser-treated BN rats. Effects of MRCCR or its constituents on cell migration, tube formation, hyperpermeability and phosphorylation of FAK/p38 MAPK were confirmed in humane retinal microvascular endothelial cells or human retinal pigment epithelial cells. RESULTS: MRCCR significantly reduced the CNV lesions areas and the extent of fluorescein leakage. MRCCR and its constituents such as ellagic acid, paeonol or gallic acid decreased cell migration, tube formation or hyperpermeability. MRCCR inhibited the phosphorylation of FAK and p38 MAPK. CONCLUSION: Combining the oral MRCCR and intravitreal injection of anti-VEGF medicine may result in a more potent therapeutic effect and consequently bring the reduction in eye injection numbers for patients with wet AMD.


Assuntos
Neovascularização de Coroide , Animais , Neovascularização de Coroide/tratamento farmacológico , Modelos Animais de Doenças , Células Endoteliais , Angiofluoresceinografia , Humanos , Lasers , Extratos Vegetais/farmacologia , Ratos , Ratos Endogâmicos BN , Fator A de Crescimento do Endotélio Vascular
18.
Exp Mol Med ; 54(1): 23-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34997212

RESUMO

Ischemia-reperfusion (I/R) injury accelerates the cardiomyocytes (CMs) death by oxidative stress, and thereby deteriorates cardiac function. There has been a paradigm shift in the therapeutic perspective more towards the prevention or amelioration of damage caused by reperfusion. Cardiac microvascular endothelial cells (CMECs) are more vulnerable to reperfusion injury and play the crucial roles more than CMs in the pathological process of early I/R injury. In this study, we investigate that CU06-1004, as a vascular leakage blocker, can improve cardiac function by inhibiting CMEC's hyperpermeability and subsequently reducing the neutrophil's plugging and infiltration in infarcted hearts. CU06-1004 was delivered intravenously 5 min before reperfusion and the rats were randomly divided into three groups: (1) vehicle, (2) low-CU06-1004 (1 mg/kg, twice at 24 h intervals), and (3) high-CU06-1004 (5 mg/kg, once before reperfusion). CU06-1004 treatment reduced necrotic size and cardiac edema by enhancing vascular integrity, as demonstrated by the presence of intact junction proteins on CMECs and surrounding pericytes in early I/R injury. It also decreased the expression of vascular cell adhesion molecule 1 (VCAM-1) on CMECs, resulting in reduced infiltration of neutrophils and macrophages. Echocardiography showed that the CU06-1004 treatment significantly improved cardiac function compared with the vehicle group. Interestingly, single high-dose treatment with CU06-1004 provided a greater functional improvement than repetitive low-dose treatment until 8 weeks post I/R. These findings demonstrate that CU06-1004 enhances vascular integrity and improves cardiac function by preventing lethal myocardial I/R injury. It can provide a promising therapeutic option, as potential adjunctive therapy to current reperfusion strategies.


Assuntos
Traumatismo por Reperfusão Miocárdica , Animais , Edema/metabolismo , Células Endoteliais/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Ratos , Saponinas , Remodelação Ventricular
19.
Brain Commun ; 4(6): fcac299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36458208

RESUMO

Increasing genetic evidence supports the hypothesis that variants in the annexin A11 gene (ANXA11) contribute to amyotrophic lateral sclerosis pathogenesis. Therefore, we studied the clinical aspects of sporadic amyotrophic lateral sclerosis patients carrying ANXA11 variants. We also implemented functional experiments to verify the pathogenicity of the hotspot variants associated with amyotrophic lateral sclerosis-frontotemporal dementia. Korean patients diagnosed with amyotrophic lateral sclerosis (n = 882) underwent genetic evaluations through next-generation sequencing, which identified 16 ANXA11 variants in 26 patients. We analysed their clinical features, such as the age of onset, progression rate, initial symptoms and cognitive status. To evaluate the functional significance of the ANXA11 variants in amyotrophic lateral sclerosis-frontotemporal dementia pathology, we additionally utilized patient fibroblasts carrying frontotemporal dementia-linked ANXA11 variants (p.P36R and p.D40G) to perform a series of in vitro studies, including calcium imaging, stress granule dynamics and protein translation. The frequency of the pathogenic or likely pathogenic variants of ANXA11 was 0.3% and the frequency of variants classified as variants of unknown significance was 2.6%. The patients with variants in the low-complexity domain presented unique clinical features, including late-onset, a high prevalence of amyotrophic lateral sclerosis-frontotemporal dementia, a fast initial progression rate and a high tendency for bulbar-onset compared with patients carrying variants in the C-terminal repeated annexin homology domains. In addition, functional studies using amyotrophic lateral sclerosis-frontotemporal dementia patient fibroblasts revealed that the ANXA11 variants p.P36R and p.D40G impaired intracellular calcium homeostasis, stress granule disassembly and protein translation. This study suggests that the clinical manifestations of amyotrophic lateral sclerosis and amyotrophic lateral sclerosis-frontotemporal dementia spectrum patients with ANXA11 variants could be distinctively characterized depending upon the location of the variant.

20.
Front Pharmacol ; 12: 695009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149436

RESUMO

Endothelial barrier integrity is important for vascular homeostasis, and hyperpermeability participates in the progression of many pathological states, such as diabetic retinopathy, ischemic stroke, chronic bowel disease, and inflammatory disease. Here, using drug repositioning, we discovered that primaquine diphosphate (PD), previously known as an antimalarial drug, was a potential blocker of vascular leakage. PD inhibited the linear pattern of vascular endothelial growth factors (VEGF)-induced disruption at the cell boundaries, blocked the formation of VEGF-induced actin stress fibers, and stabilized the cortactin actin rings in endothelial cells. PD significantly reduced leakage in the Miles assay and mouse model of streptozotocin (STZ)-induced diabetic retinopathy. Targeted prediction programs and deubiquitinating enzyme activity assays identified a potential mechanism of action for PD and demonstrated that this operates via ubiquitin specific protease 1 (USP1). USP1 inhibition demonstrated a conserved barrier function by inhibiting VEGF-induced leakage in endothelial permeability assays. Taken together, these findings suggest that PD could be used as a novel drug for vascular leakage by maintaining endothelial integrity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA