RESUMO
Nanostructured metal oxide semiconductors have shown outstanding performances in photoelectrochemical (PEC) water splitting, but limitations in light harvesting and charge collection have necessitated further advances in photoelectrode design. Herein, we propose anodized Fe foams (AFFs) with multidimensional nano/micro-architectures as a highly efficient photoelectrode for PEC water splitting. Fe foams fabricated by freeze-casting and sintering were electrochemically anodized and directly used as photoanodes. We verified the superiority of our design concept by achieving an unprecedented photocurrent density in PEC water splitting over 5â mA cm-2 before the dark current onset, which originated from the large surface area and low electrical resistance of the AFFs. A photocurrent of over 6.8â mA cm-2 and an accordingly high incident photon-to-current efficiency of over 50 % at 400â nm were achieved with incorporation of Co oxygen evolution catalysts. In addition, research opportunities for further advances by structual and compositional modifications are discussed, which can resolve the low fill factoring behavior and improve the overall performance.