Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Langmuir ; 39(34): 12206-12215, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37589758

RESUMO

Surfactant systems are often employed in cosmetic formulations where they dry on skin as a surface, thereby becoming increasingly concentrated systems. To better understand this drying process, we focused on the difference of self-assembled structures of the water/glycerol/polyoxyethylene (30) phytosteryl ether (EO30PS) system in bulk and on a solid substrate because the interaction between the substrate and the surfactant may have a substantial effect on the self-assembly, which may be related to the bulk structure but in detail may also differ strongly from the bulk situation. In bulk, small-angle neutron scattering (SANS) experiments showed that with increasing loss of water, the degree of ordering increases but changes of the aggregate structure are rather small. The results indicate that ellipsoidal micelles of EO30PS are densely packed and simply become more ordered in bulk during the drying process. On the other hand, neutron reflectometry revealed that EO30PS molecules adsorb onto a Si surface in the form of bilayers and analysis indicates that at a high concentration (c = 20 wt %), there are on average two bilayers (a double bilayer) on the Si substrate. The adsorbed membrane structure of EO30PS is rather thin with respect to its hydrophobic part, indicating tilted molecules, containing only some solvent, and being not highly ordered. These experimental results then allow for a much deeper understanding of the structural properties of practical formulations as they are applied, for instance, in cosmetic lotions.

2.
Molecules ; 27(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36431929

RESUMO

Mesoscopic shear elasticity has been revealed in ordinary liquids both experimentally by reinforcing the liquid/surface interfacial energy and theoretically by nonextensive models. The elastic effects are here examined in the frame of small molecules with strong electrostatic interactions such as room temperature ionic liquids [emim][Tf2N] and nitrate solutions exhibiting paramagnetic properties. We first show that these charged fluids also exhibit a nonzero low-frequency shear elasticity at the submillimeter scale, highlighting their resistance to shear stress. A neutron scattering study completes the dynamic mechanical analysis of the paramagnetic nitrate solution, evidencing that the magnetic properties do not induce the formation of a structure in the solution. We conclude that the elastic correlations contained in liquids usually considered as viscous away from any phase transition contribute in an effective way to collective effects under external stress whether mechanical or magnetic fields.

3.
Langmuir ; 37(45): 13235-13243, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34735164

RESUMO

Using CO2 as a resource in the production of materials is a viable alternative to conventional, petroleum-based raw materials and therefore offers great potential for more sustainable chemistry. This study presents a detailed structural characterization of aggregates of nonionic dodecyl surfactants with different amounts of CO2 substituting ethylene oxide (EO) in the head group. The micellar structure was characterized as a function of concentration and temperature by dynamic and static light scattering and, in further detail, by small-angle neutron scattering (SANS). The influence of the CO2 unit in the hydrophilic EO group is systematically compared to the incorporation of propylene oxide (PO) and propiolactone (PL). The surfactants with carbonate groups in their head groups form ellipsoidal micelles in an aqueous solution similar to conventional nonionic surfactants, becoming bigger with increasing CO2 content. In contrast, the incorporation of PO units hardly alters the behavior, while the incorporation of a PL unit has an effect comparable to the CO2 unit. The analysis of the SANS data shows decreasing hydration with increasing CO2 and PL content. By increasing the temperature, a typical sphere-rod transition is observed, where CO2 surfactants show a much higher elongation with increasing temperature, which is correlated with the reduced cloud point and a lower extent of head group hydration. Our findings demonstrate that CO2-containing surface-active compounds are an interesting, potentially "greener" alternative to conventional nonionic surfactants.

4.
Soft Matter ; 14(8): 1482-1491, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29400392

RESUMO

Small-angle neutron scattering (SANS) and neutron spin-echo (NSE) have been used to investigate the temperature-dependent solution behaviour of highly-branched poly(N-isopropylacrylamide) (HB-PNIPAM). SANS experiments have shown that water is a good solvent for both HB-PNIPAM and a linear PNIPAM control at low temperatures where the small angle scattering is described by a single correlation length model. Increasing the temperature leads to a gradual collapse of HB-PNIPAM until above the lower critical solution temperature (LCST), at which point aggregation occurs, forming disperse spherical particles of up to 60 nm in diameter, independent of the degree of branching. However, SANS from linear PNIPAM above the LCST is described by a model that combines particulate structure and a contribution from solvated chains. NSE was used to study the internal and translational solution dynamics of HB-PNIPAM chains below the LCST. Internal HB-PNIPAM dynamics is described well by the Rouse model for non-entangled chains.

5.
J Chem Phys ; 146(2): 024501, 2017 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-28088144

RESUMO

The confinement of liquid mixtures in porous channels provides new insight into fluid ordering at the nanoscale. In this study, we address a phenomenon of microphase separation, which appears as a novel fascinating confinement effect for fully miscible binary liquids. We investigate the structure of tert-butanol-toluene mixtures confined in the straight and mono-dispersed cylindrical nanochannels of SBA-15 mesoporous silicates (D = 8.3 nm). Small angle neutron scattering experiments on samples with carefully designed isotopic compositions are performed to systematically vary the scattering length density of the different compounds and assess the radial concentration profile of the confined phases. The resulting modulation of the Bragg reflections of SBA-15 is compared with the predictions from different core-shell models, highlighting a molecular-scale phase-separated tubular structure with the tert-butanol forming a layer at the pore surface, surrounding a toluene-rich core. The present structural study suggests that the microphase separation phenomenon in confinement, which so far had only been reported for a smaller pore size (D = 3.65 nm) and a unique mixture composition, must be considered as a general phenomenon. It also highlights the strength of neutron scattering method with isotopic substitution, which is a unique experimental approach to reveal this phenomenon.

6.
Sci Adv ; 9(34): eadj8336, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37611112

RESUMO

From fundamental physical constants to the identification of liquid shear elasticity, over the past decade, new ways have emerged to understand viscosity.

7.
Polymers (Basel) ; 15(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37177350

RESUMO

Block copolymers synthesized via Atom Transfer Radical Polymerization from alkyl acrylate and t-butyl acrylate and the subsequent hydrolysis of the t-butyl acrylate to acrylic acid were systematically varied with respect to their hydrophobic part by the variation in the alkyl chain length and the degree of polymerisation in this block. Depending on the architecture of the hydrophobic part, they had a more or less pronounced tendency to form copolymer micelles in an aqueous solution. They were employed for the preparation of IPECs by mixing the copolymer aggregates with the polycations polydiallyldimethylammonium chloride (PDADMAC) or q-chit. The IPEC structure as a function of the composition was investigated by Static Light and Small Angle Neutron Scattering. For weakly-associated block copolymers (short alkyl chain), complexation with polycation led to the formation of globular complexes, while already existing micelles (long alkyl chain) grew further in mass. In general, aggregates became larger upon the addition of further polycation, but this growth was much more pronounced for PDADMAC compared to q-chit, thereby leading to the formation of clusters of aggregates. Accordingly, the structure of such IPECs with a hydrophobic block depended largely on the type of complexing polyelectrolyte, which allowed for controlling the structural organisation via the molecular architecture of the two oppositely charged polyelectrolytes.

8.
J Biomed Mater Res A ; 110(2): 298-303, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34351058

RESUMO

The dynamical mechanical analysis of blood generally uses models inspired by conventional flows, assuming scale-independent homogeneous flows and without considering fluid-surface boundary interactions. The present experimental study highlights the relevance of using an approach in line with physiological reality providing a strong interaction between the fluid and the boundary interface. New dynamic properties of human blood plasma are found: a finite shear elastic response (solid-like property) is identified in nearly static conditions, which also depends on the scale (being reinforced at small scales). The elastic behavior is confirmed by the induction, without heat transfer, of local hot and cold thermodynamic states evidencing a thermo-mechanical coupling in blood plasma so far known only in elastic materials. This finding opens new routes for medical diagnosis and device fabrication.


Assuntos
Plasma , Elasticidade , Humanos , Estresse Mecânico
9.
Langmuir ; 27(14): 8885-97, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21692463

RESUMO

A spontaneously forming gel of unilamellar vesicles based on sodium oleate (Na oleate) and 1-octanol as amphiphiles has been employed as a template in the formation of a silica gel formed by the hydrolysis of the inorganic precursor tetraethyl orthosilicate (TEOS). Up to about 10 wt % TEOS can be incorporated into this vesicle gel without phase separation and in a fully homogeneous formation process by simple mixing of the components. The process itself relies solely upon the self-organizing properties of this amphiphilic template system. The formation process was followed by means of time-resolved turbidity, rheology, and small-angle neutron scattering (SANS) experiments. It can be concluded that the presence of the precursor TEOS affects the kinetics of the process but the original vesicle gel structure is retained even up to highest TEOS content. The kinetic studies confirm that under the chosen conditions the vesicle formation proceeds much faster than the hydrolysis of TEOS and the subsequent formation of the silica gel. SANS displays in the low q-range an additional scattering due to the silica gel network, i.e., a hybrid material of an amphiphilic vesicle gel and an inorganic oxide gel is formed. Thus, this method is a very facile novel route of forming a highly ordered silica/vesicle gel by employing a self-organizing amphiphilic system as template and the formation of the silica network proceeds in a fully homogeneous fashion under kinetic control.

10.
J Phys Chem B ; 125(30): 8652-8658, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34296613

RESUMO

In the conventional picture, the temperature of a liquid bath in the quiescent state is uniform down to thermal fluctuation length scales. Here we examine the impact of a low-frequency shear mechanical field (hertz) on the thermal equilibrium of polypropylene glycol and liquid water away from any phase transition confined between high-energy surfaces. We show the emergence of both cooling and heating shear waves of several tens of micrometers widths varying synchronously with the applied shear strain wave. The thermal wave is stable at low strain amplitude and low frequency while thermal harmonics develop by increasing the frequency or the strain amplitude. The liquid layer behaves as a dynamic thermoelastic medium challenging the extension of the fluctuation-dissipation theorem to nonequilibrium fluids. This view is in agreement with recent theoretical models predicting that liquids support shear elastic waves up to a finite propagation length scale of the order the thermal wave.

11.
J Phys Chem Lett ; 12(1): 650-657, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33393306

RESUMO

Liquids confined to sub-millimeter scales have remained poorly understood. One of the most striking effects is the large elasticity revealed using good wetting conditions, which grows upon further decreasing the confinement length, L. These systems display a low-frequency shear modulus in the order of 1-103 Pa, contrary to our everyday experience of liquids as bodies with a zero low-frequency shear modulus. While early experimental evidence of this effect was met with skepticism and abandoned, further experimental results and, most recently, a new atomistic theoretical framework have confirmed that liquids indeed possess a finite low-frequency shear modulus G', which scales with the inverse cubic power of confinement length L. We show that this law is universal and valid for a wide range of materials (liquid water, glycerol, ionic liquids, non-entangled polymer liquids, isotropic liquids crystals). Open questions and potential applications in microfluidics mechanochemistry, energy, and other fields are highlighted.

12.
Polymers (Basel) ; 13(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34301137

RESUMO

The recent identification of a finite shear elasticity in mesoscopic fluids has motivated the search of other solid-like properties of liquids. We present an innovative thermal approach of liquids. We identify a dynamic thermo-elastic mesoscopic behavior by building the thermal image produced by different liquids upon applying a low frequency mechanical shear field. We selected three fluids: a low molecular weight polybutylacrylate (PBuA), polypropyleneglycol (PPG), and glycerol. We demonstrate that a part of the energy of the shear strain is converted in cold and hot shear bands varying synchronously with the applied shear field. This thermodynamic change suggests a coupling to shear elastic modes in agreement with the low frequency shear elasticity theoretically foreseen and experimentally demonstrated.

13.
Langmuir ; 26(13): 10411-4, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20527956

RESUMO

The successive transitions of morphology in aqueous solutions of interacting micelles are directly evidenced by the position q* of the correlation peak of the small angle neutron scattering profiles. As the volume fraction Phi increases, q* successively fits to the dilution laws expected for spheres and cylinders, and eventually gets close to the one expected for sheets when the micelles get branched. Data in between the swelling laws are quantitatively analyzed in terms of aggregation number and junction density. Varying the temperature in the dilute regime yields the end-cap energy which varies with molecular structure and scales as Phi(-1/2). In the semidilute regime, the junction density scales as nu(j) approximately Phi(1.8), close but slightly faster than theoretically expected. The boosting effect of intermicellar repulsion on growth and branching is pointed out by the present results which directly show that both condensation processes keep the micelles further apart.

14.
Sci Rep ; 10(1): 13340, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770000

RESUMO

Thermo-elasticity couples the deformation of an elastic (solid) body to its temperature and vice-versa. It is a solid-like property. Highlighting such property in liquids is a paradigm shift: it requires long-range collective interactions that are not considered in current liquid descriptions. The present microthermal studies provide evidence for such solid-like correlations. It is shown that ordinary liquids emit a modulated thermal signal when applying a low frequency (Hz) mechanical shear stress. The liquid splits in several tenths microns wide hot and cold thermal bands, all varying synchronously and separately with the applied stress wave reaching a sizable amplitude of ± 0.2 °C. Thermomechanical coupling challenges fluid dynamics: it reveals that the liquid does not dissipate the energy of shear waves at low frequency, but converts it in non-uniform thermodynamic states. The dynamic thermal changes work in an adiabatic way supporting the hypothesis of the excitation of macroscopic elastic correlations whose range is limited to several tens of microns, in accordance with recent non-extensive theoretical models. The proof of thermomechanical coupling opens the way to a new generation of energy-efficient temperature converters.

15.
J Phys Chem B ; 124(41): 9126-9135, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32945665

RESUMO

We have performed small-angle neutron scattering in a momentum transfer range (0.05 < Q < 0.5 Å-1) to study long-range order and concentration fluctuations in deep eutectic solvents (DESs) and their aqueous solutions. Ethaline (choline chloride/ethylene glycol), glycerol/lactic acid, and menthol/decanoic acid mixtures were selected to illustrate individually the case of ionic, nonionic, and hydrophobic mixtures. Carefully designed isotopic labeling was used to emphasize selectively the spatial correlations between the different solvent components. For ethaline DESs and their aqueous solutions, a weak low-Q peak observed only for certain compositions and some partial structure factors revealed the mesoscopic segregation of ethylene glycol molecules that do not participate in the solvation of ionic units, either because they are in excess with respect to the eutectic stoichiometry (1:4 neat ethaline) or substituted by water (4w-ethaline and higher aqueous dilutions). For the nonionic hydrophilic solutions, such a mesoscopic segregation was not observed. This indicates that the better balanced interactions between the three nonionic H-bonded components (water, lactic acid, and glycerol) favor homogeneous mixing. For the hydrophobic DESs, we observed an excess of coherent scattering intensity centered at Q = 0, which could be reproduced by a model of noninteracting spherical domains. Local concentration fluctuations are not excluded either. However, unlike liquid mixtures with a tendency to demix, we have found no evidence of expansion of domains with different compositions to a large scale.

16.
ChemSusChem ; 13(3): 601-607, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31769195

RESUMO

Nonionic ethylene oxide (EO)-based surfactants are widely employed in commercial applications and normally form gel-like liquid crystalline phases at higher concentrations, rendering their handling under such conditions difficult. By incorporating CO2 units in their hydrophilic head groups, the consumption of the petrochemical EO was reduced, and the tendency to form liquid crystals was suppressed completely. This surprising behavior was characterized by rheology and studied with respect to its structural origin by means of small-angle neutron scattering (SANS). These experiments showed a strongly reduced repulsive interaction between the micellar aggregates, attributed to a reduced hydration and enhanced interpenetration of the head groups owing to the presence of the CO2 units. In addition, with increasing CO2 content the surfactants became more efficient and effective with respect to their surface activity. These findings are important because the renewable resource CO2 is used, and the CO2 -containing surfactants allow handling at very high concentrations, an aspect of enormous practical importance.

17.
Chemistry ; 15(2): 372-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19034934

RESUMO

Two-component systems capable of self-assembling into soft gel-phase materials are of considerable interest due to their tunability and versatility. This paper investigates two-component gels based on a combination of a L-lysine-based dendron and a rigid diamine spacer (1,4-diaminobenzene or 1,4-diaminocyclohexane). The networked gelator was investigated using thermal measurements, circular dichroism, NMR spectroscopy and small angle neutron scattering (SANS) giving insight into the macroscopic properties, nanostructure and molecular-scale organisation. Surprisingly, all of these techniques confirmed that irrespective of the molar ratio of the components employed, the "solid-like" gel network always consisted of a 1:1 mixture of dendron/diamine. Additionally, the gel network was able to tolerate a significant excess of diamine in the "liquid-like" phase before being disrupted. In the light of this observation, we investigated the ability of the gel network structure to evolve from mixtures of different aromatic diamines present in excess. We found that these two-component gels assembled in a component-selective manner, with the dendron preferentially recognising 1,4-diaminobenzene (>70 %), when similar competitor diamines (1,2- and 1,3-diaminobenzene) are present. Furthermore, NMR relaxation measurements demonstrated that the gel based on 1,4-diaminobenzene was better able to form a selective ternary complex with pyrene than the gel based on 1,4-diaminocyclohexane, indicative of controlled and selective pi-pi interactions within a three-component assembly. As such, the results in this paper demonstrate how component selection processes in two-component gel systems can control hierarchical self-assembly.


Assuntos
Géis/química , Antracenos/química , Dicroísmo Circular , Misturas Complexas/química , Diaminas/química , Espectroscopia de Ressonância Magnética , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Especificidade por Substrato , Temperatura de Transição
18.
Macromol Rapid Commun ; 30(20): 1709-14, 2009 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21638441

RESUMO

The flow of viscoelastic materials is usually interpreted as resulting from intramolecular properties. Typically, the non-linear flow behaviour and sluggish relaxation dynamics in entangled polymers are interpreted by a disentanglement process. This molecular interpretation has never been validated by direct observation. We report here on in situ observations of polymer melts under steady-state shear flow using neutron scattering and particle tracking velocimetry. It is shown that the chains remain largely undeformed under steady-state shear flow whereas wall slippage and shear-banding are identified in both entangled and unentangled polymer melts. These observations are of prime importance; they reveal that the flow mechanism and its viscoelastic signature reflect a collective effect and not properties of individual chains.

19.
Chem Sci ; 10(2): 385-397, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30713642

RESUMO

The ionic assembly of oppositely charged polyelectrolyte-surfactant complexes (PESCs) is often done with the aim of constructing more functional colloids, for instance as advanced delivery systems. However, PESCs are often not easily loaded with a solubilisate due to intrinsic restrictions of such complexes. This question was addressed from a different starting point: by employing microemulsion droplets as heavily loaded surfactant systems and thereby avoiding potential solubilisation limitations from the beginning. We investigated mixtures of cationic oil-in-water (O/W) microemulsion droplets and oppositely charged sodium polyacrylate (NaPA) and determined structure and phase behaviour as a function of the mixing ratio for different droplet sizes and different M w (NaPA). Around an equimolar charge ratio an extended precipitate region is present, which becomes wider for larger droplets and with increasing M w of the NaPA. Static and dynamic light scattering (SLS and DLS) and small-angle neutron scattering (SANS) show the formation of one-dimensional arrangements of microemulsion droplets for polyelectrolyte excess, which become more elongated with increasing M w (NaPA) and less so with increasing NaPA excess. What is interesting is a marked sensitivity to ionic strength, where already a modest increase to ∼20 mM leads to a dissolution of the complexes. This work shows that polyelectrolyte/microemulsion complexes (PEMECs) are structurally very versatile hybrid systems, combining the high solubilisate loading of microemulsions with the larger-scale structuring induced by the polymer, thereby markedly extending the concept of conventional PESCs. This type of system has not been described before and is highly promising for future applications where high payloads are to be formulated.

20.
Chemistry ; 14(36): 11369-75, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18618539

RESUMO

The self-assembly in aqueous solution of a PEG-peptide conjugate is studied by spectroscopy, electron microscopy, rheology and small-angle X-ray and neutron scattering (SAXS and SANS). The peptide fragment, FFKLVFF is based on fragment KLVFF of the amyloid beta-peptide, Abeta(16-20), extended by two hydrophobic phenylalanine units. This is conjugated to PEG which confers water solubility and leads to distinct self-assembled structures. Small-angle scattering reveals the formation of cylindrical fibrils comprising a peptide core and PEG corona. This constrained structure leads to a model parallel beta-sheet self-assembled structure with a radial arrangement of beta sheets. On increasing concentration, successively nematic and hexagonal columnar phases are formed. The flow-induced alignment of both structures was studied in situ by SANS using a Couette cell. Shear-induced alignment is responsible for the shear thinning behaviour observed by dynamic shear rheometry. Incomplete recovery of moduli after cessation of shear is consistent with the observation from SANS of retained orientation in the sample.


Assuntos
Peptídeos/química , Polietilenoglicóis/química , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Peptídeos/síntese química , Polietilenoglicóis/síntese química , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA