Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Environ Sci Technol ; 51(21): 12443-12454, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29043784

RESUMO

Arsenic concentrations from 20 450 domestic wells in the U.S. were used to develop a logistic regression model of the probability of having arsenic >10 µg/L ("high arsenic"), which is presented at the county, state, and national scales. Variables representing geologic sources, geochemical, hydrologic, and physical features were among the significant predictors of high arsenic. For U.S. Census blocks, the mean probability of arsenic >10 µg/L was multiplied by the population using domestic wells to estimate the potential high-arsenic domestic-well population. Approximately 44.1 M people in the U.S. use water from domestic wells. The population in the conterminous U.S. using water from domestic wells with predicted arsenic concentration >10 µg/L is 2.1 M people (95% CI is 1.5 to 2.9 M). Although areas of the U.S. were underrepresented with arsenic data, predictive variables available in national data sets were used to estimate high arsenic in unsampled areas. Additionally, by predicting to all of the conterminous U.S., we identify areas of high and low potential exposure in areas of limited arsenic data. These areas may be viewed as potential areas to investigate further or to compare to more detailed local information. Linking predictive modeling to private well use information nationally, despite the uncertainty, is beneficial for broad screening of the population at risk from elevated arsenic in drinking water from private wells.


Assuntos
Arsênio , Poluentes Químicos da Água , Poços de Água , Modelos Logísticos , Estados Unidos , Abastecimento de Água
2.
Environ Sci Technol ; 50(14): 7555-63, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27399813

RESUMO

Probabilities of arsenic in groundwater at depths used for domestic and public supply in the Central Valley of California are predicted using weak-learner ensemble models (boosted regression trees, BRT) and more traditional linear models (logistic regression, LR). Both methods captured major processes that affect arsenic concentrations, such as the chemical evolution of groundwater, redox differences, and the influence of aquifer geochemistry. Inferred flow-path length was the most important variable but near-surface-aquifer geochemical data also were significant. A unique feature of this study was that previously predicted nitrate concentrations in three dimensions were themselves predictive of arsenic and indicated an important redox effect at >10 µg/L, indicating low arsenic where nitrate was high. Additionally, a variable representing three-dimensional aquifer texture from the Central Valley Hydrologic Model was an important predictor, indicating high arsenic associated with fine-grained aquifer sediment. BRT outperformed LR at the 5 µg/L threshold in all five predictive performance measures and at 10 µg/L in four out of five measures. BRT yielded higher prediction sensitivity (39%) than LR (18%) at the 10 µg/L threshold-a useful outcome because a major objective of the modeling was to improve our ability to predict high arsenic areas.


Assuntos
Arsênio , Água Potável , California , Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Abastecimento de Água
3.
Environ Sci Technol ; 48(10): 5643-51, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24779475

RESUMO

Aquifer vulnerability models were developed to map groundwater nitrate concentration at domestic and public-supply well depths in the Central Valley, California. We compared three modeling methods for ability to predict nitrate concentration >4 mg/L: logistic regression (LR), random forest classification (RFC), and random forest regression (RFR). All three models indicated processes of nitrogen fertilizer input at the land surface, transmission through coarse-textured, well-drained soils, and transport in the aquifer to the well screen. The total percent correct predictions were similar among the three models (69-82%), but RFR had greater sensitivity (84% for shallow wells and 51% for deep wells). The results suggest that RFR can better identify areas with high nitrate concentration but that LR and RFC may better describe bulk conditions in the aquifer. A unique aspect of the modeling approach was inclusion of outputs from previous, physically based hydrologic and textural models as predictor variables, which were important to the models. Vertical water fluxes in the aquifer and percent coarse material above the well screen were ranked moderately high-to-high in the RFR models, and the average vertical water flux during the irrigation season was highly significant (p < 0.0001) in logistic regression.


Assuntos
Monitoramento Ambiental , Água Subterrânea/química , Modelos Teóricos , Nitratos/análise , Poluentes Químicos da Água/análise , Abastecimento de Água , Calibragem , California , Geografia , Modelos Logísticos
4.
Environ Sci Technol ; 46(2): 901-8, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22129446

RESUMO

Nitrate leaching in the unsaturated zone poses a risk to groundwater, whereas nitrate in tile drainage is conveyed directly to streams. We developed metamodels (MMs) consisting of artificial neural networks to simplify and upscale mechanistic fate and transport models for prediction of nitrate losses by drains and leaching in the Corn Belt, USA. The two final MMs predicted nitrate concentration and flux, respectively, in the shallow subsurface. Because each MM considered both tile drainage and leaching, they represent an integrated approach to vulnerability assessment. The MMs used readily available data comprising farm fertilizer nitrogen (N), weather data, and soil properties as inputs; therefore, they were well suited for regional extrapolation. The MMs effectively related the outputs of the underlying mechanistic model (Root Zone Water Quality Model) to the inputs (R(2) = 0.986 for the nitrate concentration MM). Predicted nitrate concentration was compared with measured nitrate in 38 samples of recently recharged groundwater, yielding a Pearson's r of 0.466 (p = 0.003). Predicted nitrate generally was higher than that measured in groundwater, possibly as a result of the time-lag for modern recharge to reach well screens, denitrification in groundwater, or interception of recharge by tile drains. In a qualitative comparison, predicted nitrate concentration also compared favorably with results from a previous regression model that predicted total N in streams.


Assuntos
Água Subterrânea/química , Modelos Químicos , Nitratos/química , Simulação por Computador , Monitoramento Ambiental/métodos , Fertilizantes/análise , Sensibilidade e Especificidade , Estados Unidos , Poluentes Químicos da Água/química
5.
J Environ Qual ; 39(3): 1051-65, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20400601

RESUMO

Unsaturated zone N fate and transport were evaluated at four sites to identify the predominant pathways of N cycling: an almond [Prunus dulcis (Mill.) D.A. Webb] orchard and cornfield (Zea mays L.) in the lower Merced River study basin, California; and corn-soybean [Glycine max (L.) Merr.] rotations in study basins at Maple Creek, Nebraska, and at Morgan Creek, Maryland. We used inverse modeling with a new version of the Root Zone Water Quality Model (RZWQM2) to estimate soil hydraulic and nitrogen transformation parameters throughout the unsaturated zone; previous versions were limited to 3-m depth and relied on manual calibration. The overall goal of the modeling was to derive unsaturated zone N mass balances for the four sites. RZWQM2 showed promise for deeper simulation profiles. Relative root mean square error (RRMSE) values for predicted and observed nitrate concentrations in lysimeters were 0.40 and 0.52 for California (6.5 m depth) and Nebraska (10 m), respectively, and index of agreement (d) values were 0.60 and 0.71 (d varies between 0 and 1, with higher values indicating better agreement). For the shallow simulation profile (1 m) in Maryland, RRMSE and d for nitrate were 0.22 and 0.86, respectively. Except for Nebraska, predictions of average nitrate concentration at the bottom of the simulation profile agreed reasonably well with measured concentrations in monitoring wells. The largest additions of N were predicted to come from inorganic fertilizer (153-195 kg N ha(-1) yr(-1) in California) and N fixation (99 and 131 kg N ha(-1) yr(-1) in Maryland and Nebraska, respectively). Predicted N losses occurred primarily through plant uptake (144-237 kg N ha(-1) yr(-1)) and deep seepage out of the profile (56-102 kg N ha(-1) yr(-1)). Large reservoirs of organic N (up to 17,500 kg N ha(-1) m(-1) at Nebraska) were predicted to reside in the unsaturated zone, which has implications for potential future transfer of nitrate to groundwater.


Assuntos
Monitoramento Ambiental/métodos , Modelos Químicos , Fixação de Nitrogênio , Nitrogênio/química , Nitrogênio/metabolismo , Agricultura , Brometos , Nitratos/química , Compostos Orgânicos , Solo/análise , Estados Unidos , Água
6.
Sci Total Environ ; 655: 512-519, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30476830

RESUMO

Unregulated private wells in the United States are susceptible to many groundwater contaminants. Ingestion of nitrate, the most common anthropogenic private well contaminant in the United States, can lead to the endogenous formation of N-nitroso-compounds, which are known human carcinogens. In this study, we expand upon previous efforts to model private well groundwater nitrate concentration in North Carolina by developing multiple machine learning models and testing against out-of-sample prediction. Our purpose was to develop exposure estimates in unmonitored areas for use in the Agricultural Health Study (AHS) cohort. Using approximately 22,000 private well nitrate measurements in North Carolina, we trained and tested continuous models including a censored maximum likelihood-based linear model, random forest, gradient boosted machine, support vector machine, neural networks, and kriging. Continuous nitrate models had low predictive performance (R2 < 0.33), so multiple random forest classification models were also trained and tested. The final classification approach predicted <1 mg/L, 1-5 mg/L, and ≥5 mg/L using a random forest model with 58 variables and maximizing the Cohen's kappa statistic. The final model had an overall accuracy of 0.75 and high specificity for the higher two categories and high sensitivity for the lowest category. The results will be used for the categorical prediction of private well nitrate for AHS cohort participants that reside in North Carolina.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Modelos Teóricos , Nitratos/análise , Poluentes Químicos da Água/análise , Poços de Água , Agricultura , Água Potável/normas , Aprendizado de Máquina , North Carolina
7.
J Environ Qual ; 37(3): 1145-57, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18453434

RESUMO

Pesticide leaching through variably thick soils beneath agricultural fields in Morgan Creek, Maryland was simulated for water years 1995 to 2004 using LEACHM (Leaching Estimation and Chemistry Model). Fifteen individual models were constructed to simulate five depths and three crop rotations with associated pesticide applications. Unsaturated zone thickness averaged 4.7 m but reached a maximum of 18.7 m. Average annual recharge to ground water decreased from 15.9 to 11.1 cm as the unsaturated zone increased in thickness from 1 to 10 m. These point estimates of recharge are at the lower end of previously published values, which used methods that integrate over larger areas capturing focused recharge in the numerous detention ponds in the watershed. The total amount of applied and leached masses for five parent pesticide compounds and seven metabolites were estimated for the 32-km2 Morgan Creek watershed by associating each hectare to the closest one-dimensional model analog of model depth and crop rotation scenario as determined from land-use surveys. LEACHM parameters were set such that branched, serial, first-order decay of pesticides and metabolites was realistically simulated. Leaching is predicted to be greatest for shallow soils and for persistent compounds with low sorptivity. Based on simulation results, percent parent compounds leached within the watershed can be described by a regression model of the form e(-depth) (a ln t1/2-b ln K OC) where t1/2 is the degradation half-life in aerobic soils, K OC is the organic carbon normalized sorption coefficient, and a and b are fitted coefficients (R2 = 0.86, p value = 7 x 10(-9)).


Assuntos
Praguicidas/química , Poluentes do Solo/química , Poluentes Químicos da Água/química , Clima , Meia-Vida
8.
Pest Manag Sci ; 64(9): 933-44, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18416432

RESUMO

BACKGROUND: Key climatic factors influencing the transport of pesticides to drains and to depth were identified. Climatic characteristics such as the timing of rainfall in relation to pesticide application may be more critical than average annual temperature and rainfall. The fate of three pesticides was simulated in nine contrasting soil types for two seasons, five application dates and six synthetic weather data series using the MACRO model, and predicted cumulative pesticide loads were analysed using statistical methods. RESULTS: Classification trees and Pearson correlations indicated that simulated losses in excess of 75th percentile values (0.046 mg m(-2) for leaching, 0.042 mg m(-2) for drainage) generally occurred with large rainfall events following autumn application on clay soils, for both leaching and drainage scenarios. The amount and timing of winter rainfall were important factors, whatever the application period, and these interacted strongly with soil texture and pesticide mobility and persistence. Winter rainfall primarily influenced losses of less mobile and more persistent compounds, while short-term rainfall and temperature controlled leaching of the more mobile pesticides. CONCLUSIONS: Numerous climatic characteristics influenced pesticide loss, including the amount of precipitation as well as the timing of rainfall and extreme events in relation to application date. Information regarding the relative influence of the climatic characteristics evaluated here can support the development of a climatic zonation for European-scale risk assessment for pesticide fate.


Assuntos
Clima , Monitoramento Ambiental , Praguicidas/análise , Poluentes Químicos da Água/análise , Modelos Biológicos , Resíduos de Praguicidas/análise , Chuva , Estações do Ano , Solo/análise , Poluentes do Solo/análise , Temperatura , Movimentos da Água
9.
Artigo em Inglês | MEDLINE | ID: mdl-30041450

RESUMO

Nitrate levels in our water resources have increased in many areas of the world largely due to applications of inorganic fertilizer and animal manure in agricultural areas. The regulatory limit for nitrate in public drinking water supplies was set to protect against infant methemoglobinemia, but other health effects were not considered. Risk of specific cancers and birth defects may be increased when nitrate is ingested under conditions that increase formation of N-nitroso compounds. We previously reviewed epidemiologic studies before 2005 of nitrate intake from drinking water and cancer, adverse reproductive outcomes and other health effects. Since that review, more than 30 epidemiologic studies have evaluated drinking water nitrate and these outcomes. The most common endpoints studied were colorectal cancer, bladder, and breast cancer (three studies each), and thyroid disease (four studies). Considering all studies, the strongest evidence for a relationship between drinking water nitrate ingestion and adverse health outcomes (besides methemoglobinemia) is for colorectal cancer, thyroid disease, and neural tube defects. Many studies observed increased risk with ingestion of water nitrate levels that were below regulatory limits. Future studies of these and other health outcomes should include improved exposure assessment and accurate characterization of individual factors that affect endogenous nitrosation.


Assuntos
Água Potável , Nitratos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Europa (Continente) , Feminino , Humanos , Metemoglobinemia/induzido quimicamente , Neoplasias/induzido quimicamente , Defeitos do Tubo Neural/induzido quimicamente , Compostos Nitrosos/metabolismo , Gravidez , Doenças da Glândula Tireoide/induzido quimicamente , Estados Unidos
10.
Sci Total Environ ; 601-602: 1160-1172, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28599372

RESUMO

Intense demand for water in the Central Valley of California and related increases in groundwater nitrate concentration threaten the sustainability of the groundwater resource. To assess contamination risk in the region, we developed a hybrid, non-linear, machine learning model within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500m below ground surface. A database of 145 predictor variables representing well characteristics, historical and current field and landscape-scale nitrogen mass balances, historical and current land use, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The boosted regression tree (BRT) method was used to screen and rank variables to predict nitrate concentration at the depths of domestic and public well supplies. The novel approach included as predictor variables outputs from existing physically based models of the Central Valley. The top five most important predictor variables included two oxidation/reduction variables (probability of manganese concentration to exceed 50ppb and probability of dissolved oxygen concentration to be below 0.5ppm), field-scale adjusted unsaturated zone nitrogen input for the 1975 time period, average difference between precipitation and evapotranspiration during the years 1971-2000, and 1992 total landscape nitrogen input. Twenty-five variables were selected for the final model for log-transformed nitrate. In general, increasing probability of anoxic conditions and increasing precipitation relative to potential evapotranspiration had a corresponding decrease in nitrate concentration predictions. Conversely, increasing 1975 unsaturated zone nitrogen leaching flux and 1992 total landscape nitrogen input had an increasing relative impact on nitrate predictions. Three-dimensional visualization indicates that nitrate predictions depend on the probability of anoxic conditions and other factors, and that nitrate predictions generally decreased with increasing groundwater age.

11.
Pest Manag Sci ; 72(6): 1124-32, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26224526

RESUMO

BACKGROUND: Crop residue removal for bioenergy production can alter soil hydrologic properties and the movement of agrochemicals to subsurface drains. The Root Zone Water Quality Model (RZWQM), previously calibrated using measured flow and atrazine concentrations in drainage from a 0.4 ha chisel-tilled plot, was used to investigate effects of 50 and 100% corn (Zea mays L.) stover harvest and the accompanying reductions in soil crust hydraulic conductivity and total macroporosity on transport of atrazine, metolachlor and metolachlor oxanilic acid (OXA). RESULTS: The model accurately simulated field-measured metolachlor transport in drainage. A 3 year simulation indicated that 50% residue removal reduced subsurface drainage by 31% and increased atrazine and metolachlor transport in drainage 4-5-fold when surface crust conductivity and macroporosity were reduced by 25%. Based on its measured sorption coefficient, approximately twofold reductions in OXA losses were simulated with residue removal. CONCLUSION: The RZWQM indicated that, if corn stover harvest reduces crust conductivity and soil macroporosity, losses of atrazine and metolachlor in subsurface drainage will increase owing to reduced sorption related to more water moving through fewer macropores. Losses of the metolachlor degradation product OXA will decrease as a result of the more rapid movement of the parent compound into the soil. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Herbicidas , Rizosfera , Qualidade da Água , Zea mays , Acetamidas , Atrazina , Modelos Teóricos , Movimentos da Água
12.
Sci Total Environ ; 566-567: 1062-1068, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27277210

RESUMO

Nitrate-nitrogen is a common contaminant of drinking water in many agricultural areas of the United States of America (USA). Ingested nitrate from contaminated drinking water has been linked to an increased risk of several cancers, specific birth defects, and other diseases. In this research, we assessed the relationship between animal feeding operations (AFOs) and groundwater nitrate in private wells in Iowa. We characterized AFOs by swine and total animal units and type (open, confined, or mixed), and we evaluated the number and spatial intensities of AFOs in proximity to private wells. The types of AFO indicate the extent to which a facility is enclosed by a roof. Using linear regression models, we found significant positive associations between the total number of AFOs within 2km of a well (p trend <0.001), number of open AFOs within 5km of a well (p trend <0.001), and number of mixed AFOs within 30km of a well (p trend <0.001) and the log nitrate concentration. Additionally, we found significant increases in log nitrate in the top quartiles for AFO spatial intensity, open AFO spatial intensity, and mixed AFO spatial intensity compared to the bottom quartile (0.171log(mg/L), 0.319log(mg/L), and 0.541log(mg/L), respectively; all p<0.001). We also explored the spatial distribution of nitrate-nitrogen in drinking wells and found significant spatial clustering of high-nitrate wells (>5mg/L) compared with low-nitrate (≤5mg/L) wells (p=0.001). A generalized additive model for high-nitrate status identified statistically significant areas of risk for high levels of nitrate. Adjustment for some AFO predictor variables explained a portion of the elevated nitrate risk. These results support a relationship between animal feeding operations and groundwater nitrate concentrations and differences in nitrate loss from confined AFOs vs. open or mixed types.


Assuntos
Criação de Animais Domésticos , Monitoramento Ambiental , Água Subterrânea/análise , Nitratos/análise , Poluentes Químicos da Água/análise , Animais , Iowa , Sus scrofa
13.
Environ Health Perspect ; 113(11): 1607-14, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16263519

RESUMO

Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered.


Assuntos
Nitratos/toxicidade , Poluentes Químicos da Água/toxicidade , Abastecimento de Água , Ingestão de Líquidos , Exposição Ambiental , Humanos , Metemoglobinemia/etiologia , Neoplasias/etiologia , Nitrosação , Compostos Nitrosos/toxicidade
14.
Sci Total Environ ; 536: 481-488, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26232757

RESUMO

Contamination of drinking water by nitrate is a growing problem in many agricultural areas of the country. Ingested nitrate can lead to the endogenous formation of N-nitroso compounds, potent carcinogens. We developed a predictive model for nitrate concentrations in private wells in Iowa. Using 34,084 measurements of nitrate in private wells, we trained and tested random forest models to predict log nitrate levels by systematically assessing the predictive performance of 179 variables in 36 thematic groups (well depth, distance to sinkholes, location, land use, soil characteristics, nitrogen inputs, meteorology, and other factors). The final model contained 66 variables in 17 groups. Some of the most important variables were well depth, slope length within 1 km of the well, year of sample, and distance to nearest animal feeding operation. The correlation between observed and estimated nitrate concentrations was excellent in the training set (r-square=0.77) and was acceptable in the testing set (r-square=0.38). The random forest model had substantially better predictive performance than a traditional linear regression model or a regression tree. Our model will be used to investigate the association between nitrate levels in drinking water and cancer risk in the Iowa participants of the Agricultural Health Study cohort.


Assuntos
Água Subterrânea/química , Nitratos/análise , Poluentes Químicos da Água/análise , Água Potável/química , Exposição Ambiental/estatística & dados numéricos , Humanos , Modelos Químicos , Abastecimento de Água/estatística & dados numéricos
15.
Pest Manag Sci ; 71(7): 972-85, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25132142

RESUMO

BACKGROUND: Complex environmental models are frequently extrapolated to overcome data limitations in space and time, but quantifying data worth to such models is rarely attempted. The authors determined which field observations most informed the parameters of agricultural system models applied to field sites in Nebraska (NE) and Maryland (MD), and identified parameters and observations that most influenced prediction uncertainty. RESULTS: The standard error of regression of the calibrated models was about the same at both NE (0.59) and MD (0.58), and overall reductions in prediction uncertainties of metolachlor and metolachlor ethane sulfonic acid concentrations were 98.0 and 98.6% respectively. Observation data groups reduced the prediction uncertainty by 55-90% at NE and by 28-96% at MD. Soil hydraulic parameters were well informed by the observed data at both sites, but pesticide and macropore properties had comparatively larger contributions after model calibration. CONCLUSIONS: Although the observed data were sparse, they substantially reduced prediction uncertainty in unsampled regions of pesticide breakthrough curves. Nitrate evidently functioned as a surrogate for soil hydraulic data in well-drained loam soils conducive to conservative transport of nitrogen. Pesticide properties and macropore parameters could most benefit from improved characterization further to reduce model misfit and prediction uncertainty.


Assuntos
Herbicidas/química , Solo/química , Acetamidas/química , Calibragem , Maryland , Modelos Teóricos , Nebraska , Resíduos de Praguicidas/química , Porosidade , Incerteza , Poluentes Químicos da Água/química
19.
Environ Sci Technol ; 44(13): 4988-97, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20540531

RESUMO

An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/análise , Nitratos/análise , Poluentes Químicos da Água/análise , Agricultura , Cidades , Geografia , Humanos , Modelos Estatísticos , Oxirredução , Análise de Regressão , Software , Estados Unidos , Purificação da Água , Abastecimento de Água
20.
Pest Manag Sci ; 65(12): 1367-77, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19670349

RESUMO

BACKGROUND: Calibration by inverse modelling was performed with the MACRO transport and fate model using long-term (>10 years) drainflow and isoproturon (IPU) data from western France. Two lack-of-fit (LOF) indices were used to control the inverse modelling: sum of squares (SS) and an alternative statistic called the vertical-horizontal distance integrator (VHDI), which is designed to account for offsets in observed and predicted arrival times of peak IPU concentration. With these data, SS was artificially inflated because it is limited to comparison of predicted and observed IPU concentrations that are concurrent in time. The LOFs were used along with the index of agreement (d) and the correlation coefficient (r) to ascertain the fit of the calibrated models. RESULTS: Predicted arrival times of peak IPU concentration differed somewhat from observed times. All four indices indicated better model fit for the second of two validation periods when inverse modelling was controlled by VHDI rather than SS (SS = 26.4, d = 0.660, r = 0.606 and VHDI = 1.25). The VHDI statistic was markedly lower compared with the uncalibrated model (38.0) and SS calibration results (24.5). The final maximum predicted IPU concentration (44.5 microg L(-1)) for the calibration period was very similar to the observed value (44 microg L(-1)). CONCLUSION: VHDI is seen as an effective alternative to SS for calibration and validation of pesticide fate models applied to responsive systems. VHDI provided a more realistic assessment of model performance for the transient flows and short-lived concentrations observed here, and also effectively substituted for the objective function in inverse modelling.


Assuntos
Praguicidas/química , Compostos de Fenilureia/química , Poluentes do Solo/química , Adsorção , Calibragem , Cinética , Modelos Estatísticos , Solo/análise , Fatores de Tempo , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA