Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(9): 15106-15114, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859169

RESUMO

A GaSb-based SEmiconductor Saturable Absorber Mirror (SESAM) enables continuous-wave picosecond mode-locked operation with excellent stability of a polarization-maintaining mid-infrared Er:ZBLAN fiber laser. The GaSb-based SESAM mode-locked fiber laser delivers an average output power of 190 mW at 2.76 µm at a repetition rate of 32.07 MHz (corresponding to a pulse energy of ∼6 nJ) and exhibits a high signal-to-noise ratio of ∼80 dB. The polarization extinction ratio is more than 23 dB. By employing an intracavity diffraction grating, the laser wavelength is continuously tunable across 2.706-2.816 µm. Passively Q-switched operation of this laser is also demonstrated.

2.
Opt Express ; 32(3): 3221-3233, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297548

RESUMO

We present the growth, spectroscopy, continuous-wave (CW) and passively mode-locked (ML) operation of a novel "mixed" tetragonal calcium rare-earth aluminate crystal, Yb3+:Ca(Gd,Y)AlO4. The absorption, stimulated-emission, and gain cross-sections are derived for π and σ polarizations. The laser performance of a c-cut Yb:Ca(Gd,Y)AlO4 crystal is studied using a spatially single-mode, 976-nm fiber-coupled laser diode as a pump source. A maximum output power of 347 mW is obtained in the CW regime with a slope efficiency of 48.9%. The emission wavelength is continuously tunable across 90 nm (1010 - 1100 nm) using a quartz-based Lyot filter. With a commercial SEmiconductor Saturable Absorber Mirror to initiate and maintain ML operation, soliton pulses as short as 35 fs are generated at 1059.8 nm with an average output power of 51 mW at ∼65.95 MHz. The average output power can be scaled to 105 mW for slightly longer pulses of 42 fs at 1063.5 nm.

3.
Opt Lett ; 49(11): 2970-2973, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824305

RESUMO

We report on a polarization-resolved study of mid-infrared emission properties of Er3+-doped orthorhombic yttrium aluminum perovskite YAlO3 single crystal. For the 4I11/2 → 4I13/2 Er3+ transition, the stimulated emission cross section is 0.20 × 10-20 cm2 at 2919 nm for light polarization E ‖ c. Pumped by an Yb-fiber laser at 976 nm, the 10 at.% Er:YAlO3 laser delivered 1.36 W at 2919 nm with a slope efficiency of 31.4%, very close to the Stokes limit, a laser threshold as low as 33 mW and a linear polarization. Pump-induced polarization switching between E || b and E || c eigen states was observed and explained by excited-state absorption from the terminal laser level.

4.
Opt Express ; 31(5): 8575-8585, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859969

RESUMO

We report on a Kerr-lens mode-locked laser based on an Yb3+-doped disordered calcium lithium niobium gallium garnet (Yb:CLNGG) crystal. Pumping by a spatially single-mode Yb fiber laser at 976 nm, the Yb:CLNGG laser delivers soliton pulses as short as 31 fs at 1056.8 nm with an average output power of 66 mW and a pulse repetition rate of ∼77.6 MHz via soft-aperture Kerr-lens mode-locking. The maximum output power of the Kerr-lens mode-locked laser amounted to 203 mW for slightly longer pulses of 37 fs at an absorbed pump power of 0.74 W, which corresponds to a peak power of 62.2 kW and an optical efficiency of 20.3%.

5.
Opt Express ; 31(10): 16634-16644, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157739

RESUMO

We report on sub-50 fs pulse generation from a passively mode-locked Yb:SrF2 laser pumped with a spatially single-mode, fiber-coupled laser diode at 976 nm. In the continuous-wave regime, the Yb:SrF2 laser generated a maximum output power of 704 mW at 1048 nm with a threshold of 64 mW and a slope efficiency of 77.2%. A continuous wavelength tuning across 89 nm (1006 - 1095 nm) was achieved with a Lyot filter. By implementing a SEmiconductor Saturable Absorber Mirror (SESAM) for initiating and sustaining the mode-locked operation, soliton pulses as short as 49 fs were generated at 1057 nm with an average output power of 117 mW at a pulse repetition rate of ∼75.9 MHz. The maximum average output power of the mode-locked Yb:SrF2 laser was scaled up to 313 mW for slightly longer pulses of 70 fs at 1049.4 nm, corresponding to a peak power of 51.9 kW and an optical efficiency of 34.7%.

6.
Opt Lett ; 48(2): 431-434, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638475

RESUMO

We report on the first, to our knowledge, mid-infrared laser operation of two Er3+-doped barium-containing fluorite-type crystals, BaF2 and (Sr,Ba)F2, featuring a low-phonon energy behavior. A continuous wave 4.9 at.% Er:(Sr,Ba)F2 laser generated 519 mW at 2.79 µm with a slope efficiency of 25.0% and a laser threshold of 27 mW. The vibronic and spectroscopic properties of these crystals are determined. The phonon energy of (Sr,Ba)F2 is as low as 267 cm-1. The Er3+ ions in this crystal feature a broadband emission owing to the 4I11/2 → 4I13/2 transition and a long luminescence lifetime of the 4I11/2 level (10.6 ms) making this compound promising for low-threshold, broadly tunable, and pulsed 2.8-µm lasers.

7.
Opt Lett ; 48(10): 2567-2570, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186710

RESUMO

We report on the first, to the best of our knowledge, laser operation on the 4I11/2 → 4I13/2 transition of erbium-doped disordered calcium lithium niobium gallium garnet (CLNGG) crystals with broadband mid-infrared emission properties. A 41.4 at.% Er:CLNGG continuous-wave laser generated 292 mW at 2.80 µm with 23.3% slope efficiency and a laser threshold of 209 mW. Er3+ ions in CLNGG feature inhomogeneously broadened spectral bands (σSE = 1.79 × 10-21 cm2 at 2.79 µm; emission bandwidth, 27.5 nm), a large luminescence branching ratio for the 4I11/2 → 4I13/2 transition of 17.9%, and a favorable ratio of the 4I11/2 and 4I13/2 lifetimes, exhibiting values of 0.34 ms and 1.17 ms (for 41.4 at.% Er3+), respectively.

8.
Opt Express ; 28(15): 22511-22523, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752511

RESUMO

This work reports on the properties of luminescent waveguides based on quaternary Ga-Ge-Sb-Se amorphous thin films doped with praseodymium. The waveguides were fabricated via magnetron co-sputtering, followed by inductively coupled plasma reactive ion etching. The initial thin film thickness and optical properties were assessed and the spectroscopic properties of the waveguides were measured. The measurements show promising results-it is possible to obtain mid-infrared fluorescence at 2.5 and 4.5 µm by injecting near-infrared light at 1.5 µm as the pump beam. By comparing waveguides with various praseodymium concentrations, the optimal doping content for maximum fluorescence intensity was identified to be close to 4100 ppmw. Finally, correlation between the intensity of mid-infrared emission and the width/length of the waveguide is shown.

9.
Opt Lett ; 45(5): 1067-1070, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108771

RESUMO

A radio frequency magnetron co-sputtering technique exploiting GaTe and ${\rm Sb}_2 {\rm Te}_3$Sb2Te3 targets was used for the fabrication of Ga-Sb-Te thin films. Prepared layers cover broad region of chemical composition (${\sim}{10.0 {-} 26.3}\,\, {\rm at.}$∼10.0-26.3at. % of Ga, ${\sim}{19.9 {-} 34.4}\,\, {\rm at.}$∼19.9-34.4at. % of Sb) while keeping Te content fairly constant (53.8-55.6 at. % of Te). Upon crystallization induced by annealing, large variations in electrical contrast were found, reaching a sheet resistance ratio of ${{R}_{\rm annealed}}/{{R}_{\rm as - deposited}}\;\sim{2.2} \times {{10}^{ - 8}}$Rannealed/Ras-deposited∼2.2×10-8 for the ${{\rm Ga}_{26.3}}{{\rm Sb}_{19.9}}{{\rm Te}_{53.8}}$Ga26.3Sb19.9Te53.8 layer. Phase transition from the amorphous to crystalline state further leads to huge changes of optical functions demonstrated by optical contrast values up to $|\Delta n| + |\Delta k| = {4.20}$|Δn|+|Δk|=4.20 for ${{\rm Ga}_{26.3}}{{\rm Sb}_{19.9}}{{\rm Te}_{53.8}}$Ga26.3Sb19.9Te53.8 composition.

10.
Faraday Discuss ; 223(0): 125-135, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32720674

RESUMO

The colour purity and versatility of fabrication of one-dimensional photonic crystals (1D PhCs) make them ideal candidates for colorimetric sensing of a variety of analytes. For instance, the detection of bacterial contaminants in food via colorimetric sensors can be highly appealing, as most of the existing detection techniques are in general time-consuming and the read-out requires specialised personnel. Here, we present a colorimetric sensor based on hybrid plasmonic/photonic 1D crystals. We demonstrate that the modification of the silver plasmon resonance brought about by the effective silver/bacterium interaction can be translated into the visible spectral region, producing a change in the structural colour. In addition, we observe a superior colorimetric sensitivity against the Gram negative Escherichia coli compared to the Gram positive Micrococcus luteus, a result that we attribute to the more efficient electrostatic interaction and cellular adhesion between the silver surface and the Gram-negative bacteria outer membrane. This approach demonstrates that in principle an easy colorimetric detection of bacterial contaminants can be achieved through the use of bio-responsive plasmonic materials, such as silver, whose selective electrostatic interaction with bacterial cell wall is well-known and occurs without the need of chemical functionalisation.


Assuntos
Colorimetria/métodos , Escherichia coli/isolamento & purificação , Micrococcus luteus/isolamento & purificação , Prata/química , Cristalização , Microscopia Eletrônica de Varredura , Fótons
11.
ACS Appl Mater Interfaces ; 15(23): 27750-27758, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37260129

RESUMO

The incorporation of responsive elements into photonic crystals is an effective strategy for fabricating active optical components to be used as sensors, actuators, and modulators. In particular, the combination of simple multilayered dielectric mirrors with optically responsive plasmonic materials has proven to be successful. Recently, Tamm plasmon (TP) modes have emerged as powerful tools for these purposes. These modes arise at the interface between a distributed Bragg reflector (DBR) and a plasmonic layer and can be excited at a normal incidence angle. Although the TP field is located usually at the DBR/metal interface, recent studies have demonstrated that nanoscale corrugation of the metal layer permits access to the TP mode from outside, thus opening exciting perspectives for many real-life applications. In this study, we show that the TP resonance obtained by capping a DBR with a nanostructured layer of silver is responsive to Escherichia coli. Our data indicate that the modification of the TP mode originates from the well-known capability of silver to interact with bacteria, within a process in which the release of Ag+ ions leaves an excess of negative charge in the metal lattice. Finally, we exploited this effect to devise a case study in which we optically differentiated between the presence of proliferative and nonproliferative bacteria using the TP resonance as a read-out. These findings make these devices promising all-optical probes for bacterial metabolic activity, including their response to external stressors.

12.
Biophys Rev (Melville) ; 2(2): 021304, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38505120

RESUMO

In past decades, the exploitation of silver nanoparticles in novel antibacterial and detection devices has risen to prominence, owing to the well-known specific interaction of silver with bacteria. The vast majority of the investigations focus on the investigation over the mechanism of action underpinning bacterial eradication, while few efforts have been devoted to the study of the modification of silver optical properties upon interaction with bacteria. Specifically, given the characteristic localized surface plasmon resonance of silver nanostructures, which is sensitive to changes in the charge carrier density or in the dielectric environment, these systems can offer a handle in the detection of bacteria pathogens. In this review, we present the state of art of the research activity on the interaction of silver nanoparticles with bacteria, with strong emphasis on the modification of their optical properties. This may indeed lead to easy color reading of bacterial tests and pave the way to the development of nanotechnologic silver-based bacterial detection systems and drug-screening platforms.

13.
Sci Rep ; 10(1): 7997, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409661

RESUMO

Despite the renewed interest in rare earth-doped chalcogenide glasses lying mainly in mid-infrared applications, a few comprehensive studies so far have presented the photoluminescence of amorphous chalcogenide films from visible to mid-infrared. This work reports the fabrication of luminescent quaternary sulfide thin films using radio-frequency sputtering and pulsed laser deposition, and the characterization of their chemical composition, morphology, structure, refractive index and Er3+ photoluminescence. The study of Er3+ 4I13/2 level lifetimes enables developing suitable deposition parameters; the dependency of composition, structural and spectroscopic properties on deposition parameters provides a way to tailor the RE-doped thin film properties. The surface roughness is very low for both deposition methods, ensuring reasonable propagation optical losses. The effects of annealing on the sulfide films spectroscopy and lifetimes were assessed. PLD appears consistent composition-wise, and largely independent of the deposition conditions, but radiofrequency magnetron sputtering seems to be more versatile, as one may tailor the film properties through deposition parameters manipulation. The luminescence via rare earth-doped chalcogenide waveguiding micro-structures might find easy-to-use applications concerning telecommunications or on-chip optical sensors for which luminescent sources or amplifiers operating at different wavelengths are required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA