Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34686599

RESUMO

How signaling units spontaneously arise from a noisy cellular background is not well understood. Here, we show that stochastic membrane deformations can nucleate exploratory dendritic filopodia, dynamic actin-rich structures used by neurons to sample its surroundings for compatible transcellular contacts. A theoretical analysis demonstrates that corecruitment of positive and negative curvature-sensitive proteins to deformed membranes minimizes the free energy of the system, allowing the formation of long-lived curved membrane sections from stochastic membrane fluctuations. Quantitative experiments show that once recruited, curvature-sensitive proteins form a signaling circuit composed of interlinked positive and negative actin-regulatory feedback loops. As the positive but not the negative feedback loop can sense the dendrite diameter, this self-organizing circuit determines filopodia initiation frequency along tapering dendrites. Together, our findings identify a receptor-independent signaling circuit that employs random membrane deformations to simultaneously elicit and limit formation of exploratory filopodia to distal dendritic sites of developing neurons.


Assuntos
Dendritos/metabolismo , Neurônios/metabolismo , Pseudópodes/metabolismo , Animais , Transdução de Sinais , Processos Estocásticos
2.
Tissue Barriers ; : 2361202, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808582

RESUMO

The blood-brain barrier (BBB) regulates the exchange of metabolites and cells between the blood and brain, and maintains central nervous system homeostasis. Various factors affect BBB barrier functions, including reactive oxygen species (ROS). ROS can act as stressors, damaging biological molecules, but they also serve as secondary messengers in intracellular signaling cascades during redox signaling. The impact of ROS on the BBB has been observed in multiple sclerosis, stroke, trauma, and other neurological disorders, making blocking ROS generation a promising therapeutic strategy for BBB dysfunction. However, it is important to consider ROS generation during normal BBB functioning for signaling purposes. This review summarizes data on proteins expressed by BBB cells that can be targets of redox signaling or oxidative stress. It also provides examples of signaling molecules whose impact may cause ROS generation in the BBB, as well as discusses the most common diseases associated with BBB dysfunction and excessive ROS generation, open questions that arise in the study of this problem, and possible ways to overcome them.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32848695

RESUMO

The presynaptic compartment of the chemical synapse is a small, yet extremely complex structure. Considering its size, most methods of optical microscopy are not able to resolve its nanoarchitecture and dynamics. Thus, its ultrastructure could only be studied by electron microscopy. In the last decade, new methods of optical superresolution microscopy have emerged allowing the study of cellular structures and processes at the nanometer scale. While this is a welcome addition to the experimental arsenal, it has necessitated careful analysis and interpretation to ensure the data obtained remains artifact-free. In this article we review the application of nanoscopic techniques to the study of the synapse and the progress made over the last decade with a particular focus on the presynapse. We find to our surprise that progress has been limited, calling for imaging techniques and probes that allow dense labeling, multiplexing, longer imaging times, higher temporal resolution, while at least maintaining the spatial resolution achieved thus far.

4.
Biochim Biophys Acta Mol Cell Res ; 1867(2): 118601, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31733262

RESUMO

The nuclear accumulation of proteins may depend on the presence of short targeting sequences, which are known as nuclear localization signals (NLSs). Here, we found that NLSs are predicted in some cytosolic proteins and examined the hypothesis that these NLSs may be functional under certain conditions. As a model, human cardiac troponin I (hcTnI) was used. After expression in cultured non-muscle or undifferentiated muscle cells, hcTnI accumulated inside nuclei. Several NLSs were predicted and confirmed by site-directed mutagenesis in hcTnI. Nuclear import occurred via the classical karyopherin-α/ß nuclear import pathway. However, hcTnI expressed in cultured myoblasts redistributed from the nucleus to the cytoplasm, where it was integrated into forming myofibrils after the induction of muscle differentiation. It appears that the dynamic retention of proteins inside cytoplasmic structures can lead to switching between nuclear and cytoplasmic localization.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Troponina I/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , Microscopia Confocal , Mutagênese Sítio-Dirigida , Mioblastos/citologia , Mioblastos/metabolismo , Sinais de Localização Nuclear/metabolismo , Alinhamento de Sequência , Troponina I/química , Troponina I/genética , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
5.
Biomaterials ; 167: 107-120, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29567387

RESUMO

Collagen, a strong platelet activator, is recognized by integrin α2ß1 and GPVI. It induces aggregation, if added to suspended platelets, or platelet adhesion if immobilized to a surface. The recombinant non-prolylhydroxylated mini-collagen FC3 triple helix containing one α2ß1 integrin binding site is a tool to specifically study how α2ß1 integrin activates platelet. Whereas soluble FC3 monomers antagonistically block collagen-induced platelet activation, immobilization of several FC3 molecules to an interface or to colloidal nanobeads determines the agonistic action of FC3. Nanopatterning of FC3 reveals that intermolecular distances below 64 nm between α2ß1 integrin binding sites trigger signaling through dot-like clusters of α2ß1 integrin, which are visible in high resolution microscopy with dSTORM. Upon signaling, these integrin clusters increase in numbers per platelet, but retain their individual size. Immobilization of several FC3 to 100 nm-sized nanobeads identifies α2ß1 integrin-triggered signaling in platelets to occur at a twentyfold slower rate than collagen, which activates platelet in a fast integrative signaling via different platelet receptors. As compared to collagen stimulation, FC3-nanobead-triggered signaling cause a significant stronger activation of the protein kinase BTK, a weak and dispensable activation of PDK1, as well as a distinct phosphorylation pattern of PDB/Akt.


Assuntos
Tirosina Quinase da Agamaglobulinemia/imunologia , Plaquetas/citologia , Colágeno/imunologia , Integrina alfa2beta1/imunologia , Ativação Plaquetária , Sítios de Ligação , Plaquetas/imunologia , Colágeno/química , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/imunologia , Glicoproteínas da Membrana de Plaquetas/imunologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA