Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 92(8): 6026-6033, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32202417

RESUMO

Cross-linking mass spectrometry (XL-MS) has become a powerful structural tool for defining protein-protein interactions (PPIs) and elucidating architectures of large protein assemblies. To advance XL-MS studies, we have previously developed a series of sulfoxide-containing MS-cleavable cross-linkers to facilitate the detection and identification of cross-linked peptides using multistage mass spectrometry (MSn). While current sulfoxide-based cross-linkers are effective for in vivo and in vitro XL-MS studies at the systems-level, new reagents are still needed to help expand PPI coverage. To this end, we have designed and synthesized six variable-length derivatives of disuccinimidyl sulfoxide (DSSO) to better understand the effects of spacer arm modulation on MS-cleavability, fragmentation characteristics, and MS identification of cross-linked peptides. In addition, the impact on cross-linking reactivity was evaluated. Moreover, alternative MS2-based workflows were explored to determine their feasibility for analyzing new sulfoxide-containing cross-linked products. Based on the results of synthetic peptides and a model protein, we have further demonstrated the robustness and predictability of sulfoxide chemistry in designing MS-cleavable cross-linkers. Importantly, we have identified a unique asymmetric design that exhibits preferential fragmentation of cross-links over peptide backbones, a desired feature for MSn analysis. This work has established a solid foundation for further development of sulfoxide-containing MS-cleavable cross-linkers with new functionalities.


Assuntos
Reagentes de Ligações Cruzadas/síntese química , Safrol/análogos & derivados , Reagentes de Ligações Cruzadas/química , Espectrometria de Massas , Estrutura Molecular , Safrol/química
2.
Mol Cell Proteomics ; 16(5): 840-854, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28292943

RESUMO

The 26S proteasome is the macromolecular machine responsible for ATP/ubiquitin dependent degradation. As aberration in proteasomal degradation has been implicated in many human diseases, structural analysis of the human 26S proteasome complex is essential to advance our understanding of its action and regulation mechanisms. In recent years, cross-linking mass spectrometry (XL-MS) has emerged as a powerful tool for elucidating structural topologies of large protein assemblies, with its unique capability of studying protein complexes in cells. To facilitate the identification of cross-linked peptides, we have previously developed a robust amine reactive sulfoxide-containing MS-cleavable cross-linker, disuccinimidyl sulfoxide (DSSO). To better understand the structure and regulation of the human 26S proteasome, we have established new DSSO-based in vivo and in vitro XL-MS workflows by coupling with HB-tag based affinity purification to comprehensively examine protein-protein interactions within the 26S proteasome. In total, we have identified 447 unique lysine-to-lysine linkages delineating 67 interprotein and 26 intraprotein interactions, representing the largest cross-link dataset for proteasome complexes. In combination with EM maps and computational modeling, the architecture of the 26S proteasome was determined to infer its structural dynamics. In particular, three proteasome subunits Rpn1, Rpn6, and Rpt6 displayed multiple conformations that have not been previously reported. Additionally, cross-links between proteasome subunits and 15 proteasome interacting proteins including 9 known and 6 novel ones have been determined to demonstrate their physical interactions at the amino acid level. Our results have provided new insights on the dynamics of the 26S human proteasome and the methodologies presented here can be applied to study other protein complexes.


Assuntos
Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular , Humanos , Modelos Moleculares , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
3.
Anal Chem ; 88(20): 10301-10308, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27626298

RESUMO

Cross-linking mass spectrometry (XL-MS) represents a recently popularized hybrid methodology for defining protein-protein interactions (PPIs) and analyzing structures of large protein assemblies. In particular, XL-MS strategies have been demonstrated to be effective in elucidating molecular details of PPIs at the peptide resolution, providing a complementary set of structural data that can be utilized to refine existing complex structures or direct de novo modeling of unknown protein structures. To study structural and interaction dynamics of protein complexes, quantitative cross-linking mass spectrometry (QXL-MS) strategies based on isotope-labeled cross-linkers have been developed. Although successful, these approaches are mostly limited to pairwise comparisons. In order to establish a robust workflow enabling comparative analysis of multiple cross-linked samples simultaneously, we have developed a multiplexed QXL-MS strategy, namely, QMIX (Quantitation of Multiplexed, Isobaric-labeled cross (X)-linked peptides) by integrating MS-cleavable cross-linkers with isobaric labeling reagents. This study has established a new analytical platform for quantitative analysis of cross-linked peptides, which can be directly applied for multiplexed comparisons of the conformational dynamics of protein complexes and PPIs at the proteome scale in future studies.


Assuntos
Reagentes de Ligações Cruzadas/química , Proteínas/química , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Citocromos c/química , Citocromos c/metabolismo , Marcação por Isótopo , Peptídeos/análise , Domínios e Motivos de Interação entre Proteínas , Proteínas/metabolismo , Sulfóxidos/química
4.
Anal Chem ; 88(16): 8315-22, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27417384

RESUMO

Cross-linking mass spectrometry (XL-MS) has become a powerful strategy for defining protein-protein interactions and elucidating architectures of large protein complexes. However, one of the inherent challenges in MS analysis of cross-linked peptides is their unambiguous identification. To facilitate this process, we have previously developed a series of amine-reactive sulfoxide-containing MS-cleavable cross-linkers. These MS-cleavable reagents have allowed us to establish a common robust XL-MS workflow that enables fast and accurate identification of cross-linked peptides using multistage tandem mass spectrometry (MS(n)). Although amine-reactive reagents targeting lysine residues have been successful, it remains difficult to characterize protein interaction interfaces with little or no lysine residues. To expand the coverage of protein interaction regions, we present here the development of a new acidic residue-targeting sulfoxide-containing MS-cleavable homobifunctional cross-linker, dihydrazide sulfoxide (DHSO). We demonstrate that DHSO cross-linked peptides display the same predictable and characteristic fragmentation pattern during collision induced dissociation as amine-reactive sulfoxide-containing MS-cleavable cross-linked peptides, thus permitting their simplified analysis and unambiguous identification by MS(n). Additionally, we show that DHSO can provide complementary data to amine-reactive reagents. Collectively, this work not only enlarges the range of the application of XL-MS approaches but also further demonstrates the robustness and applicability of sulfoxide-based MS-cleavability in conjunction with various cross-linking chemistries.


Assuntos
Reagentes de Ligações Cruzadas/química , Peptídeos/química , Safrol/análogos & derivados , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Cavalos , Mioglobina/química , Mioglobina/metabolismo , Peptídeos/síntese química , Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Safrol/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo
5.
Org Biomol Chem ; 13(17): 5030-7, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25823605

RESUMO

The cross-linking Mass Spectrometry (XL-MS) technique extracts structural information from protein complexes without requiring highly purified samples, crystallinity, or large amounts of material. However, there are challenges to applying the technique to protein complexes in vitro, and those challenges become more daunting with in vivo experiments. Issues include effective detection and identification of cross-linked peptides from complex mixtures. While MS-cleavable cross-linkers facilitate the sequencing and identification of cross-linked peptides, enrichable cross-linkers increase their detectability by allowing their separation from non-cross-linked peptides prior to MS analysis. Although a number of cross-linkers with single functionality have been developed in recent years, an ideal reagent would incorporate both capabilities for XL-MS studies. Therefore, two new cross-linkers have been designed and prepared that incorporate an azide (azide-A-DSBSO) or alkyne (alkyne-A-DSBSO) to enable affinity purification strategies based on click chemistry. The integration of an acid cleavage site next to the enrichment handle allows easy recovery of cross-linked products during affinity purification. In addition, these sulfoxide containing cross-linking reagents possess robust MS-cleavable bonds to facilitate fast and easy identification of cross-linked peptides using MS analysis. Optimized, gram-scale syntheses of these cross-linkers have been developed and the azide-A-DSBSO cross-linker has been evaluated with peptides and proteins to demonstrate its utility in XL-MS analysis.


Assuntos
Reagentes de Ligações Cruzadas/química , Proteínas/química , Sulfóxidos/química , Alcinos/química , Azidas/química , Química Click , Reagentes de Ligações Cruzadas/síntese química , Espectrometria de Massas , Estrutura Molecular , Ligação Proteica , Sulfóxidos/síntese química
6.
J Am Chem Soc ; 135(19): 7288-95, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23590235

RESUMO

Adhesion phenomena are essential to many biological processes and to synthetic adhesives and manufactured coatings and composites. Supramolecular interactions are often implicated in various adhesion mechanisms. Recently, supramolecular building blocks, such as synthetic DNA base-pair mimics, have drawn attention in the context of molecular recognition, self-assembly, and supramolecular polymers. These reversible, hydrogen-bonding interactions have been studied extensively for their adhesive capabilities at the nano- and microscale, however, much less is known about their utility for practical adhesion in macroscopic systems. Herein, we report the preparation and evaluation of supramolecular coupling agents based on high-affinity, high-fidelity quadruple hydrogen-bonding units (e.g., DAN·DeUG, Kassoc = 10(8) M(-1) in chloroform). Macroscopic adhesion between polystyrene films and glass surfaces modified with 2,7-diamidonaphthyridine (DAN) and ureido-7-deazaguanine (DeUG) units was evaluated by mechanical testing. Structure-property relationships indicate that the designed supramolecular interaction at the nanoscale plays a key role in the observed macroscopic adhesive response. Experiments probing reversible adhesion or self-healing properties of bulk samples indicate that significant recovery of initial strength can be realized after failure but that the designed noncovalent interaction does not lead to healing during the process of adhesion loss.


Assuntos
Adesivos/química , DNA/química , Guanina/análogos & derivados , Naftiridinas/química , Ureia/análogos & derivados , Pareamento de Bases , Vidro/química , Guanina/química , Ligação de Hidrogênio , Modelos Moleculares , Poliestirenos/química , Propriedades de Superfície , Ureia/química
7.
Nat Commun ; 6: 10053, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26632597

RESUMO

The full enzymatic activity of the cullin-RING ubiquitin ligases (CRLs) requires a ubiquitin-like protein (that is, Nedd8) modification. By deamidating Gln40 of Nedd8 to glutamate (Q40E), the bacterial cycle-inhibiting factor (Cif) family is able to inhibit CRL E3 activities, thereby interfering with cellular functions. Despite extensive structural studies on CRLs, the molecular mechanism by which Nedd8 Gln40 deamidation affects CRL functions remains unclear. We apply a new quantitative cross-linking mass spectrometry approach to characterize three different types of full-length human Cul1-Rbx1 complexes and uncover major Nedd8-induced structural rearrangements of the CRL1 catalytic core. More importantly, we find that those changes are not induced by Nedd8(Q40E) conjugation, indicating that the subtle change of a single Nedd8 amino acid is sufficient to revert the structure of the CRL catalytic core back to its unmodified form. Our results provide new insights into how neddylation regulates the conformation and activity of CRLs.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Culina/metabolismo , Glutamina/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitinas/química , Ubiquitinas/metabolismo , Motivos de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Domínio Catalítico , Proteínas Culina/química , Proteínas Culina/genética , Desaminação , Ácido Glutâmico/metabolismo , Humanos , Espectrometria de Massas , Proteína NEDD8 , Ligação Proteica , Proteínas Ligases SKP Culina F-Box/química , Proteínas Ligases SKP Culina F-Box/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA