Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2302983121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437529

RESUMO

Terrestrial glacial records from the Patagonian Andes and New Zealand Alps document quasi-synchronous Southern Hemisphere-wide glacier advances during the late Quaternary. However, these records are inherently incomplete. Here, we provide a continuous marine record of western-central Patagonian ice sheet (PIS) extent over a complete glacial-interglacial cycle back into the penultimate glacial (~140 ka). Sediment core MR16-09 PC03, located at 46°S and ~150 km offshore Chile, received high terrestrial sediment and meltwater input when the central PIS extended westward. We use biomarkers, foraminiferal oxygen isotopes, and major elemental data to reconstruct terrestrial sediment and freshwater input related to PIS variations. Our sediment record documents three intervals of general PIS marginal fluctuations, during Marine Isotope Stage (MIS) 6 (140 to 135 ka), MIS 4 (~70 to 60 ka), and late MIS 3 to MIS 2 (~40 to 18 ka). These higher terrigenous input intervals occurred during sea-level low stands, when the western PIS covered most of the Chilean fjords, which today retain glaciofluvial sediments. During these intervals, high-amplitude phases of enhanced sediment supply occur at millennial timescales, reflecting increased ice discharge most likely due to a growing PIS. We assign the late MIS 3 to MIS 2 phases and, by inference, older advances to Antarctic cold stages. We conclude that the increased sediment/meltwater release during Southern Hemisphere millennial-scale cold phases was likely related to higher precipitation caused by enhanced westerly winds at the northwestern margin of the PIS. Our records complement terrestrial archives and provide evidence for PIS climate sensitivity.

2.
Nature ; 573(7773): 256-260, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31477908

RESUMO

Mediterranean climates are characterized by strong seasonal contrasts between dry summers and wet winters. Changes in winter rainfall are critical for regional socioeconomic development, but are difficult to simulate accurately1 and reconstruct on Quaternary timescales. This is partly because regional hydroclimate records that cover multiple glacial-interglacial cycles2,3 with different orbital geometries, global ice volume and atmospheric greenhouse gas concentrations are scarce. Moreover, the underlying mechanisms of change and their persistence remain unexplored. Here we show that, over the past 1.36 million years, wet winters in the northcentral Mediterranean tend to occur with high contrasts in local, seasonal insolation and a vigorous African summer monsoon. Our proxy time series from Lake Ohrid on the Balkan Peninsula, together with a 784,000-year transient climate model hindcast, suggest that increased sea surface temperatures amplify local cyclone development and refuel North Atlantic low-pressure systems that enter the Mediterranean during phases of low continental ice volume and high concentrations of atmospheric greenhouse gases. A comparison with modern reanalysis data shows that current drivers of the amount of rainfall in the Mediterranean share some similarities to those that drive the reconstructed increases in precipitation. Our data cover multiple insolation maxima and are therefore an important benchmark for testing climate model performance.


Assuntos
Clima , Chuva , Estações do Ano , África , Região do Mediterrâneo , Modelos Teóricos
3.
Proc Natl Acad Sci U S A ; 117(46): 28649-28654, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139546

RESUMO

Northern Hemispheric high-latitude climate variations during the last glacial are expected to propagate globally in a complex way. Investigating the evolution of these variations requires a precise synchronization of the considered environmental archives. Aligning the globally common production rate variations of the cosmogenic radionuclide 10Be in different archives provides a tool for such synchronizations. Here, we present a 10Be record at <40-y resolution along with subdecadal proxy records from one Black Sea sediment core around Greenland Interstadial 10 (GI-10) ∼41 ka BP and the Laschamp geomagnetic excursion. We synchronized our 10Be record to that from Greenland ice cores based on its globally common production rate variations. The synchronized environmental proxy records reveal a bipartite climate response in the Black Sea region at the onset of GI-10. First, in phase with Greenland warming, reduced sedimentary coastal ice rafted detritus contents indicate less severe winters. Second, and with a lag of 190 (± 44) y, an increase in the detrital K/Ti ratio and authigenic Ca precipitation point to enhanced regional precipitation and warmer lake surface temperatures. We explain the lagged climatic response by a shift in the dominant mode of atmospheric circulation, likely connected with a time-transgressive adjustment of the regional thermal ocean interior to interstadial conditions.

4.
Nature ; 445(7123): 74-7, 2007 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17203059

RESUMO

The Asian-Australian monsoon is an important component of the Earth's climate system that influences the societal and economic activity of roughly half the world's population. The past strength of the rain-bearing East Asian summer monsoon can be reconstructed with archives such as cave deposits, but the winter monsoon has no such signature in the hydrological cycle and has thus proved difficult to reconstruct. Here we present high-resolution records of the magnetic properties and the titanium content of the sediments of Lake Huguang Maar in coastal southeast China over the past 16,000 years, which we use as proxies for the strength of the winter monsoon winds. We find evidence for stronger winter monsoon winds before the Bølling-Allerød warming, during the Younger Dryas episode and during the middle and late Holocene, when cave stalagmites suggest weaker summer monsoons. We conclude that this anticorrelation is best explained by migrations in the intertropical convergence zone. Similar migrations of the intertropical convergence zone have been observed in Central America for the period ad 700 to 900 (refs 4-6), suggesting global climatic changes at that time. From the coincidence in timing, we suggest that these migrations in the tropical rain belt could have contributed to the declines of both the Tang dynasty in China and the Classic Maya in Central America.

5.
Nat Commun ; 12(1): 3948, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168158

RESUMO

The Antarctic Circumpolar Current (ACC) plays a crucial role in global ocean circulation by fostering deep-water upwelling and formation of new water masses. On geological time-scales, ACC variations are poorly constrained beyond the last glacial. Here, we reconstruct changes in ACC strength in the central Drake Passage in vicinity of the modern Polar Front over a complete glacial-interglacial cycle (i.e., the past 140,000 years), based on sediment grain-size and geochemical characteristics. We found significant glacial-interglacial changes of ACC flow speed, with weakened current strength during glacials and a stronger circulation in interglacials. Superimposed on these orbital-scale changes are high-amplitude millennial-scale fluctuations, with ACC strength maxima correlating with diatom-based Antarctic winter sea-ice minima, particularly during full glacial conditions. We infer that the ACC is closely linked to Southern Hemisphere millennial-scale climate oscillations, amplified through Antarctic sea ice extent changes. These strong ACC variations modulated Pacific-Atlantic water exchange via the "cold water route" and potentially affected the Atlantic Meridional Overturning Circulation and marine carbon storage.

6.
Science ; 374(6570): eabi9756, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34793203

RESUMO

Our study on the exact timing and the potential climatic, environmental, and evolutionary consequences of the Laschamps Geomagnetic Excursion has generated the hypothesis that geomagnetism represents an unrecognized driver in environmental and evolutionary change. It is important for this hypothesis to be tested with new data, and encouragingly, none of the studies presented by Picin et al. undermine our model.

7.
Science ; 374(6570): eabh3655, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34793228

RESUMO

Our paper about the impacts of the Laschamps Geomagnetic Excursion 42,000 years ago has provoked considerable scientific and public interest, particularly in the so-called Adams Event associated with the initial transition of the magnetic poles. Although we welcome the opportunity to discuss our new ideas, Hawks' assertions of misrepresentation are especially disappointing given his limited examination of the material.

8.
Science ; 371(6531): 811-818, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33602851

RESUMO

Geological archives record multiple reversals of Earth's magnetic poles, but the global impacts of these events, if any, remain unclear. Uncertain radiocarbon calibration has limited investigation of the potential effects of the last major magnetic inversion, known as the Laschamps Excursion [41 to 42 thousand years ago (ka)]. We use ancient New Zealand kauri trees (Agathis australis) to develop a detailed record of atmospheric radiocarbon levels across the Laschamps Excursion. We precisely characterize the geomagnetic reversal and perform global chemistry-climate modeling and detailed radiocarbon dating of paleoenvironmental records to investigate impacts. We find that geomagnetic field minima ~42 ka, in combination with Grand Solar Minima, caused substantial changes in atmospheric ozone concentration and circulation, driving synchronous global climate shifts that caused major environmental changes, extinction events, and transformations in the archaeological record.

10.
Science ; 340(6139): 1421-7, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23661643

RESUMO

Understanding the evolution of Arctic polar climate from the protracted warmth of the middle Pliocene into the earliest glacial cycles in the Northern Hemisphere has been hindered by the lack of continuous, highly resolved Arctic time series. Evidence from Lake El'gygytgyn, in northeast (NE) Arctic Russia, shows that 3.6 to 3.4 million years ago, summer temperatures were ~8°C warmer than today, when the partial pressure of CO2 was ~400 parts per million. Multiproxy evidence suggests extreme warmth and polar amplification during the middle Pliocene, sudden stepped cooling events during the Pliocene-Pleistocene transition, and warmer than present Arctic summers until ~2.2 million years ago, after the onset of Northern Hemispheric glaciation. Our data are consistent with sea-level records and other proxies indicating that Arctic cooling was insufficient to support large-scale ice sheets until the early Pleistocene.

11.
Science ; 337(6092): 315-20, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22722254

RESUMO

The reliability of Arctic climate predictions is currently hampered by insufficient knowledge of natural climate variability in the past. A sediment core from Lake El'gygytgyn in northeastern (NE) Russia provides a continuous, high-resolution record from the Arctic, spanning the past 2.8 million years. This core reveals numerous "super interglacials" during the Quaternary; for marine benthic isotope stages (MIS) 11c and 31, maximum summer temperatures and annual precipitation values are ~4° to 5°C and ~300 millimeters higher than those of MIS 1 and 5e. Climate simulations show that these extreme warm conditions are difficult to explain with greenhouse gas and astronomical forcing alone, implying the importance of amplifying feedbacks and far field influences. The timing of Arctic warming relative to West Antarctic Ice Sheet retreats implies strong interhemispheric climate connectivity.


Assuntos
Mudança Climática , Clima Frio , Lagos , Regiões Árticas , Sedimentos Geológicos , Camada de Gelo , Datação Radiométrica , Federação Russa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA