Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Cell ; 73(5): 1001-1014.e8, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30527540

RESUMO

In Parkinson's disease (PD), α-synuclein (αS) pathologically impacts the brain, a highly lipid-rich organ. We investigated how alterations in αS or lipid/fatty acid homeostasis affect each other. Lipidomic profiling of human αS-expressing yeast revealed increases in oleic acid (OA, 18:1), diglycerides, and triglycerides. These findings were recapitulated in rodent and human neuronal models of αS dyshomeostasis (overexpression; patient-derived triplication or E46K mutation; E46K mice). Preventing lipid droplet formation or augmenting OA increased αS yeast toxicity; suppressing the OA-generating enzyme stearoyl-CoA-desaturase (SCD) was protective. Genetic or pharmacological SCD inhibition ameliorated toxicity in αS-overexpressing rat neurons. In a C. elegans model, SCD knockout prevented αS-induced dopaminergic degeneration. Conversely, we observed detrimental effects of OA on αS homeostasis: in human neural cells, excess OA caused αS inclusion formation, which was reversed by SCD inhibition. Thus, monounsaturated fatty acid metabolism is pivotal for αS-induced neurotoxicity, and inhibiting SCD represents a novel PD therapeutic approach.


Assuntos
Antiparkinsonianos/farmacologia , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolômica/métodos , Neurônios/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Estearoil-CoA Dessaturase/antagonistas & inibidores , alfa-Sinucleína/toxicidade , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Linhagem Celular , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Diglicerídeos/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/enzimologia , Neurônios Dopaminérgicos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/enzimologia , Células-Tronco Pluripotentes Induzidas/patologia , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/enzimologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Terapia de Alvo Molecular , Degeneração Neural , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/enzimologia , Células-Tronco Neurais/patologia , Neurônios/enzimologia , Neurônios/patologia , Ácido Oleico/metabolismo , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ratos Sprague-Dawley , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Estearoil-CoA Dessaturase/metabolismo , Triglicerídeos/metabolismo , alfa-Sinucleína/genética
2.
Am J Pathol ; 193(5): 520-531, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36773784

RESUMO

Abnormal aggregation of α-synuclein (αS) is thought to initiate neuronal dysfunction and death in Parkinson disease (PD). In addition to higher-molecular-weight, oligomeric, and polymeric forms of αS associated with neurotoxicity and disease, recent findings indicate the occurrence of physiological tetrameric assemblies in healthy neurons in culture and in brain. Herein, the PD-associated neurotoxin paraquat reduced physiological tetramers and led to calpain-truncated monomers and an approximately 70-kDa apparent oligomer different in size from physiological αS multimers. These truncated and oligomeric forms could also be generated by calpain cleavage of pure, recombinant human αS in vitro. Moreover, they were detected in the brains of tetramer-abrogating, E46K-amplified (3K) mice that model PD. These results indicate that paraquat triggers membrane damage and aberrant calpain activity that can induce a pathologic shift of tetramers toward an excess of full-length and truncated monomers, the accumulation of αS oligomers, and insoluble cytoplasmic αS puncta. The findings suggest that an environmental precipitant of PD can alter αS tetramer/monomer equilibrium, as already shown for several genetically caused forms of PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Camundongos , Humanos , Animais , alfa-Sinucleína/toxicidade , Calpaína , Paraquat/toxicidade
3.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34326260

RESUMO

Loss-of-function mutations in acid beta-glucosidase 1 (GBA1) are among the strongest genetic risk factors for Lewy body disorders such as Parkinson's disease (PD) and Lewy body dementia (DLB). Altered lipid metabolism in PD patient-derived neurons, carrying either GBA1 or PD αS mutations, can shift the physiological α-synuclein (αS) tetramer-monomer (T:M) equilibrium toward aggregation-prone monomers. A resultant increase in pSer129+ αS monomers provides a likely building block for αS aggregates. 3K αS mice, representing a neuropathological amplification of the E46K PD-causing mutation, have decreased αS T:M ratios and vesicle-rich αS+ aggregates in neurons, accompanied by a striking PD-like motor syndrome. We asked whether enhancing glucocerebrosidase (GCase) expression could benefit αS dyshomeostasis by delivering an adeno-associated virus (AAV)-human wild-type (wt) GBA1 vector into the brains of 3K neonates. Intracerebroventricular AAV-wtGBA1 at postnatal day 1 resulted in prominent forebrain neuronal GCase expression, sustained through 6 mo. GBA1 attenuated behavioral deficits both in working memory and fine motor performance tasks. Furthermore, wtGBA1 increased αS solubility and the T:M ratio in both 3K-GBA mice and control littermates and reduced pS129+ and lipid-rich aggregates in 3K-GBA. We observed GCase distribution in more finely dispersed lysosomes, in which there was increased GCase activity, lysosomal cathepsin D and B maturation, decreased perilipin-stabilized lipid droplets, and a normalized TFEB translocation to the nucleus, all indicative of improved lysosomal function and lipid turnover. Therefore, a prolonged increase of the αS T:M ratio by elevating GCase activity reduced the lipid- and vesicle-rich aggregates and ameliorated PD-like phenotypes in mice, further supporting lipid modulating therapies in PD.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Glucosilceramidase/metabolismo , alfa-Sinucleína/metabolismo , Animais , Animais Recém-Nascidos , Glucosilceramidase/genética , Metabolismo dos Lipídeos , Lipídeos/química , Aprendizagem em Labirinto , Camundongos , Atividade Motora , Proteínas Recombinantes , alfa-Sinucleína/química
4.
J Neurosci ; 42(10): 2116-2130, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35086904

RESUMO

α-Synuclein (αS) plays a key role in Parkinson's disease. Although Parkinson's disease is typically "sporadic," inherited αS missense mutations provide crucial insights into molecular mechanisms. Here, we examine two clinical mutants, E46K and G51D, which are both in the conserved N-terminus that mediates transient αS-membrane interactions. However, E46K increases and G51D decreases αS-membrane interactions. Previously, we amplified E46K via the 11-residue repeat motifs, creating "3K" (E35K+E46K+E61K). Here, we engineered these motifs to amplify G51D (V40D+G51D+V66D = "3D") and systematically compared E46K/3K versus G51D/3D. We found that G51D increased cytosolic αS in neural cells and 3D aggravates this. G51D, and 3D even more, reduced αS multimer-to-monomer (αS60:αS14) ratio. Both amplified variants caused cellular stress in rat primary neurons and reduced growth in human neuroblastoma cells. Importantly, both 3K- and 3D-induced stress was ameliorated by pharmacologically inhibiting stearoyl-CoA desaturase or by conditioning the cells in palmitic (16:0) or myristic (14:0) acid. SCD inhibition lowered lipid-droplet accumulation in both 3D- and 3K-expressing cells and benefitted G51D by normalizing multimer:monomer ratio, as reported previously for E46K. Our findings suggest that, despite divergent cytosol/membrane partitioning, both G51D and E46K neurotoxicity can be prevented by decreasing fatty-acid unsaturation as a common therapeutic approach.SIGNIFICANCE STATEMENT α-Synuclein (αS) dyshomeostasis is linked to Parkinson's disease. Here we focus on two contrasting familial-Parkinson's disease αS mutants, E46K and G51D, that alter αS membrane association in opposite directions (E46K increases, G51D decreases it). Taking advantage of αS repeat structure, here we designed αS "3D," an amplified G51D variant (V40D+G51D+V66D). αS 3D further enhanced G51D's cytosolic enrichment. Systematic comparison of G51D/3D with membrane-enriched E46K/its amplified variant 3K revealed that both can elicit stress in human neural cells and primary rodent neurons. This toxicity can be ameliorated by inhibiting stearoyl-CoA desaturase or by saturated fatty acid conditioning. Thus, despite divergent membrane binding, both G51D and E46K αS dyshomeostasis are mitigated by altering fatty acid saturation as a shared target.


Assuntos
Ácidos Graxos , Doença de Parkinson , alfa-Sinucleína , Animais , Citosol/metabolismo , Ácidos Graxos/metabolismo , Homeostase , Doença de Parkinson/metabolismo , Ratos , Estearoil-CoA Dessaturase/metabolismo , alfa-Sinucleína/metabolismo
5.
Ann Neurol ; 89(1): 74-90, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32996158

RESUMO

OBJECTIVE: Parkinson disease (PD) has useful symptomatic treatments that do not slow the neurodegenerative process, and no significant disease-modifying treatments are approved. A key therapeutic target in PD is α-synuclein (αS), which is both genetically implicated and accumulates in Lewy bodies rich in vesicles and other lipid membranes. Reestablishing αS homeostasis is a central goal in PD. Based on previous lipidomic analyses, we conducted a mouse trial of a stearoyl-coenzyme A desaturase (SCD) inhibitor ("5b") that prevented αS-positive vesicular inclusions and cytotoxicity in cultured human neurons. METHODS: Oral dosing and brain activity of 5b were established in nontransgenic mice. 5b in drinking water was given to mice expressing wild-type human αS (WT) or an amplified familial PD αS mutation (E35K + E46K + E61K ["3K"]) beginning near the onset of nigral and cortical neurodegeneration and the robust PD-like motor syndrome in 3K. Motor phenotypes, brain cytopathology, and SCD-related lipid changes were quantified in 5b- versus placebo-treated mice. Outcomes were compared to effects of crossing 3K to SCD1-/- mice. RESULTS: 5b treatment reduced αS hyperphosphorylation in E46K-expressing human neurons, in 3K neural cultures, and in both WT and 3K αS mice. 5b prevented subtle gait deficits in WT αS mice and the PD-like resting tremor and progressive motor decline of 3K αS mice. 5b also increased αS tetramers and reduced proteinase K-resistant lipid-rich aggregates. Similar benefits accrued from genetically deleting 1 SCD allele, providing target validation. INTERPRETATION: Prolonged reduction of brain SCD activity prevented PD-like neuropathology in multiple PD models. Thus, an orally available SCD inhibitor potently ameliorates PD phenotypes, positioning this approach to treat human α-synucleinopathies. ANN NEUROL 2021;89:74-90.


Assuntos
Doença de Parkinson/prevenção & controle , alfa-Sinucleína/genética , Animais , Encéfalo/patologia , Humanos , Corpos de Lewy/patologia , Camundongos Transgênicos , Neurônios/metabolismo , Doença de Parkinson/genética , Fenótipo , alfa-Sinucleína/metabolismo
6.
J Neurosci ; 39(38): 7628-7640, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31405930

RESUMO

Many studies report a higher risk for Parkinson's disease (PD) and younger age of onset in men. This, and the fact that the neuropathological process underlying PD symptoms may begin before menopause, suggests that estrogen-based hormone therapy could modify this higher risk in males. However, the effects of female sex or estrogen on α-synuclein (αS) homeostasis and related PD neuropathology remain unknown. Here, we used an αS tetramer-abrogating mouse model of PD (3K) that amplifies the familial E46K PD mutation to investigate the effects of female sex and brain-selective estrogen treatment on αS tetramerization and solubility, formation of vesicle-rich αS+ aggregates, dopaminergic and cortical fiber integrity, and associated motor deficits. In male 3K mice, the motor phenotype became apparent at ∼10 weeks and increased to age 6 months, paralleled by PD-like neuropathology, whereas 3K females showed a significant delay in onset. At 6 months, this beneficial phenotypic effect in 3K females was associated with a higher αS tetramer-to-monomer ratio and less decrease in dopaminergic and cortical fiber length and quantity. Brain-selective estrogen treatment in symptomatic 3K mice significantly increased the tetramer-to-monomer ratio, turnover by autophagy of aggregate-prone monomers, and neurite complexity of surviving DAergic and cortical neurons, in parallel with benefits in motor performance. Our findings support an upstream role for αS tetramer loss in PD phenotypes and a role for estrogen in mitigating PD-like neuropathology in vivo Brain-selective estrogen therapy may be useful in delaying or reducing PD symptoms in men and postmenopausal women.SIGNIFICANCE STATEMENT The mechanisms responsible for the male-to-female preponderance in Parkinson's disease (PD) are not well understood yet important for treatment efficacy. We previously showed that abrogating native α-synuclein (αS) tetramers produces a close PD model, including dopaminergic and cortical fiber loss and a progressive motor disorder responsive to l-DOPA. Here, we analyzed sex and use 10b-17ß-dihydroxyestra-1,4-dien-3-one treatment of symptomatic 3K males, and demonstrate that the beneficial effects of female sex on PD-like neuropathology can be reinstated by elevating estrogen in the male brain. The study provides evidence that 17ß-estradiol restores the tetramer-to-monomer ratio by autophagy turnover of excess αS monomers, vesicle and fiber integrity in brain regions critically involved in motor behavior. These data provide the basis for understanding sex differences in αS homeostasis and the development of therapeutic approaches to treating men and postmenopausal women with PD.


Assuntos
Encéfalo/metabolismo , Estradiol/farmacologia , Transtornos Parkinsonianos/metabolismo , Caracteres Sexuais , alfa-Sinucleína/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Estrogênios/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos Parkinsonianos/patologia
7.
Hum Mol Genet ; 26(18): 3466-3481, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28911198

RESUMO

α-Synuclein (αS) forms round cytoplasmic inclusions in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Evidence suggests a physiological function of αS in vesicle trafficking and release. In contrast to earlier tenets, recent work indicates that αS normally exists in cells in a dynamic equilibrium between monomers and tetramers/multimers. We engineered αS mutants incapable of multimerization, leading to excess monomers at vesicle membranes. By EM, such mutants induced prominent vesicle clustering, leading to round cytoplasmic inclusions. Immunogold labeling revealed abundant αS intimately associated with vesicles of varied size. Fluorescence microscopy with marker proteins showed that the αS-associated vesicles were of diverse endocytic and secretory origin. An αS '3K' mutant (E35K + E46K + E61K) that amplifies the PD/DLB-causing E46K mutation induced αS-rich vesicle clusters resembling the vesicle-rich areas of Lewy bodies, supporting pathogenic relevance. Mechanistically, E46K can increase αS vesicle binding via membrane-induced amphipathic helix formation, and '3K' further enhances this effect. Another engineered αS variant added hydrophobicity to the hydrophobic half of αS helices, thereby stabilizing αS-membrane interactions. Importantly, substituting charged for uncharged residues within the hydrophobic half of the stabilized helix not only reversed the strong membrane interaction of the multimer-abolishing αS variant but also restored multimerization and prevented the aberrant vesicle interactions. Thus, reversible αS amphipathic helix formation and dynamic multimerization regulate a normal function of αS at vesicles, and abrogating multimers has pathogenic consequences.


Assuntos
Corpos de Inclusão/metabolismo , Mutação , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Sequência Conservada , Humanos , Corpos de Inclusão/genética , Corpos de Lewy/genética , Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Estrutura Secundária de Proteína
8.
Hum Mol Genet ; 25(3): 459-71, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26604148

RESUMO

The protease HtrA2 has a protective role inside mitochondria, but promotes apoptosis under stress. We previously identified the G399S HtrA2 mutation in Parkinson's disease (PD) patients and reported mitochondrial dysfunction in vitro. Mitochondrial dysfunction is a common feature of PD and related to neurodegeneration. Complete loss of HtrA2 has been shown to cause neurodegeneration in mice. However, the full impact of HtrA2 overexpression or the G399S mutation is still to be determined in vivo. Here, we report the first HtrA2 G399S transgenic mouse model. Our data suggest that the mutation has a dominant-negative effect. We also describe a toxic effect of wild-type (WT) HtrA2 overexpression. Only low overexpression of the G399S mutation allowed viable animals and we suggest that the mutant protein is likely unstable. This is accompanied by reduced mitochondrial respiratory capacity and sensitivity to apoptotic cell death. Mice overexpressing WT HtrA2 were viable, yet these animals have inhibited mitochondrial respiration and significant induction of apoptosis in the brain leading to motor dysfunction, highlighting the opposing roles of HtrA2. Our data further underscore the importance of HtrA2 as a key mediator of mitochondrial function and its fine regulatory role in cell fate. The location and abundance of HtrA2 is tightly controlled and, therefore, human mutations leading to gain- or loss of function could provide significant risk for PD-related neurodegeneration.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Mutação , Doença de Parkinson/genética , Serina Endopeptidases/genética , Animais , Apoptose , Encéfalo/metabolismo , Encéfalo/patologia , Respiração Celular , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Dosagem de Genes , Regulação da Expressão Gênica , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Atividade Motora , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fenótipo , Serina Endopeptidases/metabolismo
9.
Neurobiol Dis ; 85: 206-217, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26523794

RESUMO

Parkinson's disease (PD) is a multisystem disorder, involving several monoaminergic neurotransmitter systems resulting in a broad range of motor and non-motor symptoms. Pathological hallmarks of PD are the loss of dopaminergic neurons and the accumulation of alpha-synuclein, however also being present in the serotonergic raphe nuclei early in the disease course. The dysfunction of the serotonergic system projecting to the hippocampus may contribute to early non-motor symptoms such as anxiety and depression. The adult hippocampal dentate gyrus (DG), a unique niche of the forebrain continuously generating new neurons, may particularly present enhanced susceptibility towards accumulating alpha-synuclein levels. The underlying molecular mechanisms in the context of neuronal maturation and survival of new-born neurons are yet not well understood. To characterize the effects of overexpression of human full-length alpha-synuclein on hippocampal cellular and synaptic plasticity, we used a recently generated BAC alpha-synuclein transgenic rat model showing important features of PD such as widespread and progressive alpha-synuclein aggregation pathology, dopamine loss and age-dependent motor decline. At the age of four months, thus prior to the occurrence of the motor phenotype, we observed a profoundly impaired dendritogenesis of neuroblasts in the hippocampal DG resulting in severely reduced survival of adult new-born neurons. Diminished neurogenesis concurred with a serotonergic deficit in the hippocampus as defined by reduced levels of serotonin (5-HT) 1B receptor, decreased 5-HT neurotransmitter levels, and a loss of serotonergic nerve terminals innervating the DG/CA3 subfield, while the number of serotonergic neurons in the raphe nuclei remained unchanged. Moreover, alpha-synuclein overexpression reduced proteins involved in vesicle release, in particular synapsin-1 and Rab3 interacting molecule (RIM3), in conjunction with an altered ultrastructural architecture of hippocampal synapses. Importantly, BAC alpha-synuclein rats showed an early anxiety-like phenotype consisting of reduced exploratory behavior and feeding. Taken together, these findings imply that accumulating alpha-synuclein severely affects hippocampal neurogenesis paralleled by impaired 5-HT neurotransmission prior to the onset of aggregation pathology and overt motor deficits in this transgenic rat model of PD.


Assuntos
Hipocampo/fisiopatologia , Neurogênese/fisiologia , Transtornos Parkinsonianos/fisiopatologia , alfa-Sinucleína/metabolismo , Animais , Western Blotting , Bromodesoxiuridina , Contagem de Células , Dopamina/metabolismo , Núcleo Dorsal da Rafe/patologia , Núcleo Dorsal da Rafe/fisiopatologia , Proteínas do Domínio Duplacortina , Comportamento Exploratório/fisiologia , Comportamento Alimentar/fisiologia , Imunofluorescência , Hipocampo/patologia , Humanos , Masculino , Microscopia Eletrônica , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/patologia , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Transtornos Parkinsonianos/patologia , Ratos Transgênicos , Serotonina/metabolismo , Sinapses/patologia , Sinapses/fisiologia , alfa-Sinucleína/genética
10.
Hum Mol Genet ; 23(15): 3975-89, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24619358

RESUMO

Lewy bodies, a pathological hallmark of Parkinson's disease (PD), contain aggregated alpha-synuclein (αSyn), which is found in several modified forms and can be discovered phosphorylated, ubiquitinated and truncated. Aggregation-prone truncated species of αSyn caused by aberrant cleavage of this fibrillogenic protein are hypothesized to participate in its sequestration into inclusions subsequently leading to synaptic dysfunction and neuronal death. Here, we investigated the role of calpain cleavage of αSyn in vivo by generating two opposing mouse models. We crossed into human [A30P]αSyn transgenic (i) mice deficient for calpastatin, a calpain-specific inhibitor, thus enhancing calpain activity (SynCAST(-)) and (ii) mice overexpressing human calpastatin leading to reduced calpain activity (SynCAST(+)). As anticipated, a reduced calpain activity led to a decreased number of αSyn-positive aggregates, whereas loss of calpastatin led to increased truncation of αSyn in SynCAST(-). Furthermore, overexpression of calpastatin decreased astrogliosis and the calpain-dependent degradation of synaptic proteins, potentially ameliorating the observed neuropathology in [A30P]αSyn and SynCAST(+) mice. Overall, our data further support a crucial role of calpains, particularly of calpain 1, in the pathogenesis of PD and in disease-associated aggregation of αSyn, indicating a therapeutic potential of calpain inhibition in PD.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Calpaína/genética , Doença de Parkinson/genética , Agregação Patológica de Proteínas/genética , alfa-Sinucleína/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Proteólise , Transdução de Sinais , Sinapses/metabolismo , Sinapses/patologia , alfa-Sinucleína/metabolismo
11.
Hum Mol Genet ; 23(3): 767-81, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24064336

RESUMO

Lewy bodies and neurites are the pathological hallmark of Parkinson's disease. These structures are composed of fibrillized and ubiquitinated alpha-synuclein suggesting that impaired protein clearance is an important event in aggregate formation. The A30P mutation is known for its fast oligomerization, but slow fibrillization rate. Despite its toxicity to neurons, mechanisms involved in either clearance or conversion of A30P alpha-synuclein from its soluble state into insoluble fibrils and their effects in vivo are poorly understood. Synphilin-1 is present in Lewy bodies, interacting with alpha-synuclein in vivo and in vitro and promotes its sequestration into aggresomes, which are thought to act as cytoprotective agents facilitating protein degradation. We therefore crossed animals overexpressing A30P alpha-synuclein with synphilin-1 transgenic mice to analyze its impact on aggregation, protein clearance and phenotype progression. We observed that co-expression of synphilin-1 mildly delayed the motor phenotype caused by A30P alpha-synuclein. Additionally, the presence of N- and C-terminal truncated alpha-synuclein species and fibrils were strongly reduced in double-transgenic mice when compared with single-transgenic A30P mice. Insolubility of mutant A30P and formation of aggresomes was still detectable in aged double-transgenic mice, paralleled by an increase of ubiquitinated proteins and high autophagic activity. Hence, this study supports the notion that co-expression of synphilin-1 promotes formation of autophagic-susceptible aggresomes and consecutively the degradation of human A30P alpha-synuclein. Notably, although synphilin-1 overexpression significantly reduced formation of fibrils and astrogliosis in aged animals, a similar phenotype is present in single- and double-transgenic mice suggesting additional neurotoxic processes in disease progression.


Assuntos
Proteínas de Transporte/genética , Proteínas do Tecido Nervoso/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Envelhecimento , Animais , Autofagia/fisiologia , Benzotiazóis , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Transporte/metabolismo , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/genética , Dobramento de Proteína , Solubilidade , Tiazóis/metabolismo , Ubiquitina/metabolismo
12.
J Neurosci Res ; 94(1): 62-73, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26451750

RESUMO

Nonmotor symptoms of cognitive and affective nature are present in premotor and motor stages of Parkinson's disease (PD). Neurogenesis, the generation of new neurons, persists throughout the mammalian life span in the hippocampal dentate gyrus. Adult hippocampal neurogenesis may be severely affected in the course of PD, accounting for some of the neuropsychiatric symptoms such as depression and cognitive impairment. Two important PD-related pathogenic factors have separately been attributed to contribute to both PD and adult hippocampal neurogenesis: dopamine depletion and accumulation of α-synuclein (α-syn). In the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model, altered neurogenesis has been linked merely to a reduced dopamine level. Here, we seek to determine whether a distinct endogenous α-syn expression pattern is associated, possibly contributing to the hippocampal neurogenic deficit. We observed a persistent reduction of striatal dopamine and a loss of tyrosine hydroxylase-expressing neurons in the substantia nigra pars compacta in contrast to a complete recovery of tyrosine hydroxylase-immunoreactive dopaminergic fibers within the striatum. However, dopamine levels in the hippocampus were significantly decreased. Survival of newly generated neurons was significantly reduced and paralleled by an accumulation of truncated, membrane-associated, insoluble α-syn within the hippocampus. Specifically, the presence of truncated α-syn species was accompanied by increased activity of calpain-1, a calcium-dependent protease. Our results further substantiate the broad effects of dopamine loss in PD-susceptible brain nuclei, gradually involved in the PD course. Our findings also indicate a detrimental synergistic interplay between dopamine depletion and posttranslational modification of α-syn, contributing to impaired hippocampal plasticity in PD.


Assuntos
Dopamina/metabolismo , Hipocampo/fisiopatologia , Intoxicação por MPTP/patologia , Neurogênese/fisiologia , alfa-Sinucleína/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Bromodesoxiuridina/metabolismo , Contagem de Células , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Antígeno Ki-67/metabolismo , Intoxicação por MPTP/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Neurogênese/efeitos dos fármacos , Neuropeptídeos/metabolismo , Espectrina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
13.
J Neurosci ; 34(28): 9441-54, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25009275

RESUMO

Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are common neurodegenerative disorders of the aging population, characterized by progressive and abnormal accumulation of α-synuclein (α-syn). Recent studies have shown that C-terminus (CT) truncation and propagation of α-syn play a role in the pathogenesis of PD/DLB. Therefore, we explored the effect of passive immunization against the CT of α-syn in the mThy1-α-syn transgenic (tg) mouse model, which resembles the striato-nigral and motor deficits of PD. Mice were immunized with the new monoclonal antibodies 1H7, 5C1, or 5D12, all directed against the CT of α-syn. CT α-syn antibodies attenuated synaptic and axonal pathology, reduced the accumulation of CT-truncated α-syn (CT-α-syn) in axons, rescued the loss of tyrosine hydroxylase fibers in striatum, and improved motor and memory deficits. Among them, 1H7 and 5C1 were most effective at decreasing levels of CT-α-syn and higher-molecular-weight aggregates. Furthermore, in vitro studies showed that preincubation of recombinant α-syn with 1H7 and 5C1 prevented CT cleavage of α-syn. In a cell-based system, CT antibodies reduced cell-to-cell propagation of full-length α-syn, but not of the CT-α-syn that lacked the 118-126 aa recognition site needed for antibody binding. Furthermore, the results obtained after lentiviral expression of α-syn suggest that antibodies might be blocking the extracellular truncation of α-syn by calpain-1. Together, these results demonstrate that antibodies against the CT of α-syn reduce levels of CT-truncated fragments of the protein and its propagation, thus ameliorating PD-like pathology and improving behavioral and motor functions in a mouse model of this disease.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Encéfalo/imunologia , Transtornos dos Movimentos/imunologia , Transtornos dos Movimentos/terapia , Transtornos Parkinsonianos/imunologia , Transtornos Parkinsonianos/terapia , alfa-Sinucleína/imunologia , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Transgênicos , Distribuição Tecidual , Resultado do Tratamento
14.
Brain ; 137(Pt 5): 1496-513, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24662516

RESUMO

In Parkinson's disease and dementia with Lewy bodies, α-synuclein aggregates to form oligomers and fibrils; however, the precise nature of the toxic α-synuclein species remains unclear. A number of synthetic α-synuclein mutations were recently created (E57K and E35K) that produce species of α-synuclein that preferentially form oligomers and increase α-synuclein-mediated toxicity. We have shown that acute lentiviral expression of α-synuclein E57K leads to the degeneration of dopaminergic neurons; however, the effects of chronic expression of oligomer-prone α-synuclein in synapses throughout the brain have not been investigated. Such a study could provide insight into the possible mechanism(s) through which accumulation of α-synuclein oligomers in the synapse leads to neurodegeneration. For this purpose, we compared the patterns of neurodegeneration and synaptic damage between a newly generated mThy-1 α-synuclein E57K transgenic mouse model that is prone to forming oligomers and the mThy-1 α-synuclein wild-type mouse model (Line 61), which accumulates various forms of α-synuclein. Three lines of α-synuclein E57K (Lines 9, 16 and 54) were generated and compared with the wild-type. The α-synuclein E57K Lines 9 and 16 were higher expressings of α-synuclein, similar to α-synuclein wild-type Line 61, and Line 54 was a low expressing of α-synuclein compared to Line 61. By immunoblot analysis, the higher-expressing α-synuclein E57K transgenic mice showed abundant oligomeric, but not fibrillar, α-synuclein whereas lower-expressing mice accumulated monomeric α-synuclein. Monomers, oligomers, and fibrils were present in α-synuclein wild-type Line 61. Immunohistochemical and ultrastructural analyses demonstrated that α-synuclein accumulated in the synapses but not in the neuronal cells bodies, which was different from the α-synuclein wild-type Line 61, which accumulates α-synuclein in the soma. Compared to non-transgenic and lower-expressing mice, the higher-expressing α-synuclein E57K mice displayed synaptic and dendritic loss, reduced levels of synapsin 1 and synaptic vesicles, and behavioural deficits. Similar alterations, but to a lesser extent, were seen in the α-synuclein wild-type mice. Moreover, although the oligomer-prone α-synuclein mice displayed neurodegeneration in the frontal cortex and hippocampus, the α-synuclein wild-type only displayed neuronal loss in the hippocampus. These results support the hypothesis that accumulating oligomeric α-synuclein may mediate early synaptic pathology in Parkinson's disease and dementia with Lewy bodies by disrupting synaptic vesicles. This oligomer-prone model might be useful for evaluating therapies directed at oligomer reduction.


Assuntos
Encéfalo/patologia , Degeneração Neural/patologia , Neurônios/metabolismo , Sinapses/patologia , alfa-Sinucleína/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Ácido Glutâmico/genética , Humanos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Lisina/genética , Transtornos da Memória/etiologia , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , alfa-Sinucleína/genética
15.
Am J Pathol ; 182(3): 940-53, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23313024

RESUMO

Progressive accumulation of α-synuclein (α-syn) in limbic and striatonigral systems is associated with the neurodegenerative processes in dementia with Lewy bodies (DLB) and Parkinson's disease (PD). The murine Thy-1 (mThy1)-α-syn transgenic (tg) model recapitulates aspects of degenerative processes associated with α-syn accumulation in these disorders. Given that axonal and synaptic pathologies are important features of DLB and PD, we sought to investigate the extent and characteristics of these alterations in mThy1-α-syn tg mice and to determine the contribution of α-syn c-terminally cleaved at amino acid 122 (CT α-syn) to these abnormalities. We generated a novel polyclonal antibody (SYN105) against the c-terminally truncated sequence (amino acids 121 to 123) of α-syn (CT α-syn) and performed immunocytochemical and ultrastructural analyses in mThy1-α-syn tg mice. We found abundant clusters of dystrophic neurites in layers 2 to 3 of the neocortex, the stratum lacunosum, the dentate gyrus, and cornu ammonis 3 of the hippocampus, striatum, thalamus, midbrain, and pons. Dystrophic neurites displayed intense immunoreactivity detected with the SYN105 antibody. Double-labeling studies with antibodies to phosphorylated neurofilaments confirmed the axonal location of full-length and CT α-syn. α-Syn immunoreactive dystrophic neurites contained numerous electrodense laminated structures. These results show that neuritic dystrophy is a prominent pathologic feature of the mThy1-α-syn tg model and suggest that CT α-syn might play an important role in the process of axonal damage in these mice as well as in DLB and PD.


Assuntos
Axônios/patologia , Doença por Corpos de Lewy/patologia , Proteínas Mutantes/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Axônios/metabolismo , Axônios/ultraestrutura , Biomarcadores/metabolismo , Demografia , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Neuritos/metabolismo , Neuritos/patologia , Neuritos/ultraestrutura , Transporte Proteico , Sinapses/metabolismo , Sinapses/patologia , Sinapses/ultraestrutura , Antígenos Thy-1/metabolismo , alfa-Sinucleína/imunologia
16.
Acta Neuropathol ; 127(4): 477-94, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24509835

RESUMO

The olfactory bulb (OB) is one of the first brain regions in Parkinson's disease (PD) to contain alpha-synuclein (α-syn) inclusions, possibly associated with nonmotor symptoms. Mechanisms underlying olfactory synucleinopathy, its contribution to progressive aggregation pathology and nigrostriatal dopaminergic loss observed at later stages, remain unclear. A second hit, such as environmental toxins, is suggestive for α-syn aggregation in olfactory neurons, potentially triggering disease progression. To address the possible pathogenic role of olfactory α-syn accumulation in early PD, we exposed mice with site-specific and inducible overexpression of familial PD-linked mutant α-syn in OB neurons to a low dose of the herbicide paraquat. Here, we found that olfactory α-syn per se elicited structural and behavioral abnormalities, characteristic of an early time point in models with widespread α-syn expression, including hyperactivity and increased striatal dopaminergic marker. Suppression of α-syn reversed the dopaminergic phenotype. In contrast, paraquat treatment synergistically induced degeneration of olfactory dopaminergic cells and opposed the higher reactive phenotype. Neither neurodegeneration nor behavioral abnormalities were detected in paraquat-treated mice with suppressed α-syn expression. By increasing calpain activity, paraquat induced a pathological cascade leading to inhibition of autophagy clearance and accumulation of calpain-cleaved truncated and insoluble α-syn, recapitulating biochemical and structural changes in human PD. Thus our results underscore the primary role of proteolytic failure in aggregation pathology. In addition, we provide novel evidence that olfactory dopaminergic neurons display an increased vulnerability toward neurotoxins in dependence to presence of human α-syn, possibly mediating an olfactory-striatal dopaminergic network dysfunction in mouse models and early PD.


Assuntos
Doença de Alzheimer , Corpo Estriado/patologia , Neurônios Dopaminérgicos/patologia , Bulbo Olfatório/patologia , alfa-Sinucleína/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/ultraestrutura , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética , Vias Neurais/efeitos dos fármacos , Vias Neurais/patologia , Neurotoxinas/toxicidade , Bulbo Olfatório/efeitos dos fármacos , Paraquat/toxicidade
17.
Brain ; 136(Pt 2): 412-32, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23413261

RESUMO

Conversion of soluble α-synuclein into insoluble and fibrillar inclusions is a hallmark of Parkinson's disease and other synucleinopathies. Accumulating evidence points towards a relationship between its generation at nerve terminals and structural synaptic pathology. Little is known about the pathogenic impact of α-synuclein conversion and deposition at nigrostriatal dopaminergic synapses in transgenic mice, mainly owing to expression limitations of the α-synuclein construct. Here, we explore whether both the rat as a model and expression of the bacterial artificial chromosome construct consisting of human full-length wild-type α-synuclein could exert dopaminergic neuropathological effects. We found that the human promoter induced a pan-neuronal expression, matching the rodent α-synuclein expression pattern, however, with prominent C-terminally truncated fragments. Ageing promoted conversion of both full-length and C-terminally truncated α-synuclein species into insolube and proteinase K-resistant fibres, with strongest accumulation in the striatum, resembling biochemical changes seen in human Parkinson's disease. Transgenic rats develop early changes in novelty-seeking, avoidance and smell before the progressive motor deficit. Importantly, the observed pathological changes were associated with severe loss of the dopaminergic integrity, thus resembling more closely the human pathology.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Neurônios Dopaminérgicos/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fenótipo , alfa-Sinucleína/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Neurônios Dopaminérgicos/metabolismo , Humanos , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , alfa-Sinucleína/biossíntese , alfa-Sinucleína/toxicidade
19.
NPJ Parkinsons Dis ; 10(1): 47, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424059

RESUMO

Mutations in the α-Synuclein (αS) gene promote αS monomer aggregation that causes neurodegeneration in familial Parkinson's disease (fPD). However, most mouse models expressing single-mutant αS transgenes develop neuronal aggregates very slowly, and few have dopaminergic cell loss, both key characteristics of PD. To accelerate neurotoxic aggregation, we previously generated fPD αS E46K mutant mice with rationally designed triple mutations based on the α-helical repeat motif structure of αS (fPD E46K→3 K). The 3 K variant increased αS membrane association and decreased the physiological tetramer:monomer ratio, causing lipid- and vesicle-rich inclusions and robust tremor-predominant, L-DOPA responsive PD-like phenotypes. Here, we applied an analogous approach to the G51D fPD mutation and its rational amplification (G51D → 3D) to generate mutant mice. In contrast to 3 K mice, G51D and 3D mice accumulate monomers almost exclusively in the cytosol while also showing decreased αS tetramer:monomer ratios. Both 1D and 3D mutant mice gradually accumulate insoluble, higher-molecular weight αS oligomers. Round αS neuronal deposits at 12 mos immunolabel for ubiquitin and pSer129 αS, with limited proteinase K resistance. Both 1D and 3D mice undergo loss of striatal TH+ fibers and midbrain dopaminergic neurons by 12 mos and a bradykinesia responsive to L-DOPA. The 3D αS mice have decreased tetramer:monomer equilibria and recapitulate major features of PD. These fPD G51D and 3D mutant mice should be useful models to study neuronal αS-toxicity associated with bradykinetic motor phenotypes.

20.
Neurobiol Dis ; 59: 38-51, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23867236

RESUMO

In Parkinson's disease (PD) patients, alpha-synuclein (α-syn) pathology advances in form of Lewy bodies and Lewy neurites throughout the brain. Clinically, PD is defined by motor symptoms that are predominantly attributed to the dopaminergic cell loss in the substantia nigra. However, motor deficits are frequently preceded by smell deficiency or neuropsychological symptoms, including increased anxiety and cognitive dysfunction. Accumulating evidence indicates that aggregation of α-syn impairs synaptic function and neurogenic capacity that may be associated with deficits in memory, learning and mood. Whether and how α-syn accumulation contributes to neuropathological events defining these earliest signs of PD is presently poorly understood. We used a tetracycline-suppressive (tet-off) transgenic mouse model that restricts overexpression of human A30P α-syn to neurons owing to usage of the neuron-specific CaMKIIα promoter. Abnormal accumulation of A30P correlated with a decreased survival of newly generated neurons in the hippocampus and olfactory bulb. Furthermore, when A30P α-syn expression was suppressed, we observed reduction of the human protein in neuronal soma. However, residual dox resistant A30P α-syn was detected in glial cells within the hippocampal neurogenic niche, concomitant with the failure to fully restore hippocampal neurogenesis. This finding is indicative to a potential spread of pathology from neuron to glia. In addition, mice expressing A30P α-syn show increased anxiety-related behavior that was reversed after dox treatment. This implies that glial A30P α-synucleinopathy within the dentate gyrus is part of a process leading to impaired hippocampal neuroplasticity, which is, however, not a sole critical event for circuits implicated in anxiety-related behavior.


Assuntos
Alanina/genética , Ansiedade , Neurogênese/genética , Neuroglia/patologia , Prolina/genética , alfa-Sinucleína/genética , Animais , Ansiedade/genética , Ansiedade/patologia , Ansiedade/fisiopatologia , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Contagem de Células , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuropeptídeos/metabolismo , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA