Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(26): 17991-17998, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38764355

RESUMO

The photo-induced dynamics of o-nitrophenol, particularly its photolysis, has garnered significant scientific interest as a potential source of nitrous acid in the atmosphere. Although the photolysis products and preceding photo-induced electronic structure dynamics have been investigated extensively, the nuclear dynamics accompanying the non-radiative relaxation of o-nitrophenol on the ultrafast timescale, which include an intramolecular proton transfer step, have not been experimentally resolved. Herein, we present a direct observation of the ultrafast nuclear motions mediating photo-relaxation using ultrafast electron diffraction. This work spatiotemporally resolves the loss of planarity which enables access to a conical intersection between the first excited state and the ground state after the proton transfer step, on the femtosecond timescale and with sub-Angstrom resolution. Our observations, supported by ab initio multiple spawning simulations, provide new insights into the proton transfer mediated relaxation mechanism in o-nitrophenol.

2.
Phys Chem Chem Phys ; 18(39): 27170-27174, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27722509

RESUMO

Non-adiabatic multiconfigurational molecular dynamics simulations have revealed a molecular "Newton's Cradle" that activates on absorption of light in the mid-UV and assists the S1/S0 internal conversion process in 1,2-dithiane, protecting the disulfide bond from photodamage. This communication challenges contemporary understanding of the S1/S0 internal conversion process in 1,2-dithiane and presents a classically-intuitive reinterpretation of experimental evidence.

3.
Nat Commun ; 14(1): 2795, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202402

RESUMO

Electrocyclic reactions are characterized by the concerted formation and cleavage of both σ and π bonds through a cyclic structure. This structure is known as a pericyclic transition state for thermal reactions and a pericyclic minimum in the excited state for photochemical reactions. However, the structure of the pericyclic geometry has yet to be observed experimentally. We use a combination of ultrafast electron diffraction and excited state wavepacket simulations to image structural dynamics through the pericyclic minimum of a photochemical electrocyclic ring-opening reaction in the molecule α-terpinene. The structural motion into the pericyclic minimum is dominated by rehybridization of two carbon atoms, which is required for the transformation from two to three conjugated π bonds. The σ bond dissociation largely happens after internal conversion from the pericyclic minimum to the electronic ground state. These findings may be transferrable to electrocyclic reactions in general.

4.
Science ; 374(6563): 92-95, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34591617

RESUMO

The radiolysis of water is ubiquitous in nature and plays a critical role in numerous biochemical and technological applications. Although the elementary reaction pathways for ionized water have been studied, the short-lived intermediate complex and structural dynamic response after the proton transfer reaction remain poorly understood. Using a liquid-phase ultrafast electron diffraction technique to measure the intermolecular oxygen···oxygen and oxygen···hydrogen bonds, we captured the short-lived radical-cation complex OH(H3O+) that was formed within 140 femtoseconds through a direct oxygen···oxygen bond contraction and proton transfer, followed by the radical-cation pair dissociation and the subsequent structural relaxation of water within 250 femtoseconds. These measurements provide direct evidence of capturing this metastable radical-cation complex before separation, thereby improving our fundamental understanding of elementary reaction dynamics in ionized liquid water.

5.
Struct Dyn ; 7(6): 064901, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33415183

RESUMO

Developing femtosecond resolution methods for directly observing structural dynamics is critical to understanding complex photochemical reaction mechanisms in solution. We have used two recent developments, ultrafast mega-electron-volt electron sources and vacuum compatible sub-micron thick liquid sheet jets, to enable liquid-phase ultrafast electron diffraction (LUED). We have demonstrated the viability of LUED by investigating the photodissociation of tri-iodide initiated with a 400 nm laser pulse. This has enabled the average speed of the bond expansion to be measured during the first 750 fs of dissociation and the geminate recombination to be directly captured on the picosecond time scale.

6.
Struct Dyn ; 7(2): 024301, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32161776

RESUMO

The conversion of light into usable chemical and mechanical energy is pivotal to several biological and chemical processes, many of which occur in solution. To understand the structure-function relationships mediating these processes, a technique with high spatial and temporal resolutions is required. Here, we report on the design and commissioning of a liquid-phase mega-electron-volt (MeV) ultrafast electron diffraction instrument for the study of structural dynamics in solution. Limitations posed by the shallow penetration depth of electrons and the resulting information loss due to multiple scattering and the technical challenge of delivering liquids to vacuum were overcome through the use of MeV electrons and a gas-accelerated thin liquid sheet jet. To demonstrate the capabilities of this instrument, the structure of water and its network were resolved up to the 3 rd hydration shell with a spatial resolution of 0.6 Å; preliminary time-resolved experiments demonstrated a temporal resolution of 200 fs.

7.
Struct Dyn ; 6(5): 054305, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31649964

RESUMO

The development of ultrafast gas electron diffraction with nonrelativistic electrons has enabled the determination of molecular structures with atomic spatial resolution. It has, however, been challenging to break the picosecond temporal resolution barrier and achieve the goal that has long been envisioned-making space- and-time resolved molecular movies of chemical reaction in the gas-phase. Recently, an ultrafast electron diffraction (UED) apparatus using mega-electron-volt (MeV) electrons was developed at the SLAC National Accelerator Laboratory for imaging ultrafast structural dynamics of molecules in the gas phase. The SLAC gas-phase MeV UED has achieved 65 fs root mean square temporal resolution, 0.63 Å spatial resolution, and 0.22 Å-1 reciprocal-space resolution. Such high spatial-temporal resolution has enabled the capturing of real-time molecular movies of fundamental photochemical mechanisms, such as chemical bond breaking, ring opening, and a nuclear wave packet crossing a conical intersection. In this paper, the design that enables the high spatial-temporal resolution of the SLAC gas phase MeV UED is presented. The compact design of the differential pump section of the SLAC gas phase MeV UED realized five orders-of-magnitude vacuum isolation between the electron source and gas sample chamber. The spatial resolution, temporal resolution, and long-term stability of the apparatus are systematically characterized.

8.
Nat Chem ; 11(6): 504-509, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30988415

RESUMO

The ultrafast photoinduced ring-opening of 1,3-cyclohexadiene constitutes a textbook example of electrocyclic reactions in organic chemistry and a model for photobiological reactions in vitamin D synthesis. Although the relaxation from the photoexcited electronic state during the ring-opening has been investigated in numerous studies, the accompanying changes in atomic distance have not been resolved. Here we present a direct and unambiguous observation of the ring-opening reaction path on the femtosecond timescale and subångström length scale using megaelectronvolt ultrafast electron diffraction. We followed the carbon-carbon bond dissociation and the structural opening of the 1,3-cyclohexadiene ring by the direct measurement of time-dependent changes in the distribution of interatomic distances. We observed a substantial acceleration of the ring-opening motion after internal conversion to the ground state due to a steepening of the electronic potential gradient towards the product minima. The ring-opening motion transforms into rotation of the terminal ethylene groups in the photoproduct 1,3,5-hexatriene on the subpicosecond timescale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA