Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 999252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275521

RESUMO

Arundo donax L. (Arundinoideae subfamily, Poaceae family) is a sub-tropical and temperate climate reed that grows in arid and semi-arid environmental conditions, from eastern China to the Mediterranean basin, suggesting potential adaptations at the epicuticular level. A thorough physical-chemical examination of the adaxial and abaxial surfaces of A. donax leaf was performed herein in an attempt to track such chemophenetic adaptations. This sort of approach is of the utmost importance for the current debate about the hypothetical invasiveness of this species in the Mediterranean basin versus its natural colonization along the Plio-Pleistocene period. We concluded that the leaf surfaces contain, apart from stomata, prickles, and long, thin trichomes, and silicon-rich tetralobate phytolits. Chemically, the dominating elements in the leaf ashes are oxygen and potassium; minor amounts of calcium, silicon, magnesium, phosphorous, sulphur, and chlorine were also detected. In both surfaces the epicuticular waxes (whose density is higher in the adaxial surface than in the abaxial surface) form randomly orientated platelets, with irregular shape and variable size, and aggregated rodlets with variable diameter around the stomata. In the case of green mature leaves, the dominating organic compounds of the epicuticular waxes of both surfaces are triterpenoids. Both surfaces feature identical hydrophobic behaviour, and exhibit the same total transmittance, total reflectance, and absorption of incident light. The above findings suggest easy growth of the plant, remarkable epidermic robustness of the leaf, and control of water loss. These chemophenetic characteristics and human influence support a neolithization process of this species along the Mediterranean basin.

2.
ACS Omega ; 3(9): 10811-10822, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30320252

RESUMO

New mesoporous silk fibroin (SF)/silica hybrids were processed via a one-pot soft and energy-efficient sol-gel chemistry and self-assembly from a silica precursor, an acidic or basic catalyst, and the ionic liquid 1-butyl-3-methylimidazolium chloride, acting as both solvent and mesoporosity-inducer. The as-prepared materials were obtained as slightly transparent-opaque, amorphous monoliths, easily transformed into powders, and stable up to ca. 300 °C. Structural data suggest the formation of a hexagonal mesostructure with low range order and apparent surface areas, pore volumes, and pore radii of 205-263 m2 g-1, 0.16-0.19 cm3 g-1, and 1.2-1.6 nm, respectively. In all samples, the dominating conformation of the SF chains is the ß-sheet. Cytotoxicity/bioactivity resazurin assays and fluorescence microscopy demonstrate the high viability of MC3T3 pre-osteoblasts to indirect (≥99 ± 9%) and direct (78 ± 2 to 99 ± 13%) contact with the SF/silica materials. Considering their properties and further improvements, these systems are promising candidates to be explored in bone tissue engineering. They also offer excellent prospects as electrolytes for solid-state electrochemical devices, in particular for fuel cells.

3.
Front Chem ; 5: 131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379781

RESUMO

Amine-functionalized bridged silsesquioxanes (BSs) were synthesized from bis[(3-trimethoxysilyl)propyl] amine via a solvent-mediated route. BS-1 and BS-2 were obtained at neutral pH with sub- and stoichiometric amounts of water, respectively, and high tetrahydrofuran content. BS-3 was prepared with hyperstoichiometric water concentration, high tetrahydrofuran content, and hydrochloric acid. BS-4 was synthesized with hyperstoichiometric water concentration, high ethanol content, and sodium hydroxide. BS-1 and BS-2 were produced as transparent films, whereas BS-3 and BS-4 formed white powders. Face-to-face stacking of flat or folded lamellae yielded quasi-hydrophobic platelets with emission quantum yields of 0.05 ± 0.01 (BS-1 and BS-2) or superhydrophilic onion-like nanoparticles with exciting emission quantum yields of 0.38 ± 0.03 (BS-3) and 0.33 ± 0.04 (BS-4), respectively. The latter two values are the largest ever reported for amine-functionalized siloxane-based hybrids lacking aromatic groups. Fast Grotthus proton hopping between = [Formula: see text]/ = NH groups (BS-3) and = N-/ = NH groups (BS-4), promoted by H+ and OH- ions, respectively, and aided by short amine-amine contacts provided by the onion-like morphology, account for this unique optical behavior.

4.
J Phys Chem B ; 117(46): 14529-43, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24144280

RESUMO

A lamellar bilayer hierarchically structured amide cross-linked alkyl/siloxane hybrid matrix (mono-amidosil, m-A(14)) was doped with a wide concentration range of potassium triflate (KCF3SO3), magnesium triflate (Mg(CF3SO3)2), and europium triflate (Eu(CF3SO3)3). In the K(+)-, Mg(2+)-, and Eu(3+)-based samples with n ≥ 5, 20, and 60 (where n is the molar ratio of amide C═O groups per cation), respectively, the original lamellar structure of m-A(14) coexists with a new lamellar phase with lower interlamellar distance. The texture of the mono-amidosils doped with K(+), Mg(2+), and Eu(3+) ions mimics cabbage leaves, foliated schist, and sea sponges, respectively. In the three series of materials, the cations bond to the oxygen atoms of the amide carbonyl groups. The amide-amide hydrogen-bonded array of m-A(14) is less perturbed by the inclusion of KCF3SO3 and Mg(CF3SO3)2 than by the incorporation of Eu(CF3SO3)3. The degree of ionic association is low for n ≥ 20. The cations coordinate to the oxygen atoms of the triflate ions, forming contact ion pairs at higher salt content. In the Mg(CF3SO3)2- and Eu(CF3SO3)3-containing materials with n = 5 and 10, respectively, crystalline salt is formed. The structural changes undergone by the alkyl chains of selected mono-amidosils in a heating/cooling cycle are reversible, are time-independent, and exhibit two distinct hysteresis domains, one associated with the order/disorder phase transition of the original lamellar bilayer structure of m-A(14) and the second one associated with the order/disorder phase transition of the new lamellar bilayer structure formed in the presence of the salts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA