Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Science ; 267(5206): 1958-65, 1995 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-7701318

RESUMO

The crystal structure of a class I aminoacyl-transfer RNA synthetase, glutamyl-tRNA synthetase (GluRS) from Thermus thermophilus, was solved and refined at 2.5 A resolution. The amino-terminal half of GluRS shows a geometrical similarity with that of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) of the same subclass in class I, comprising the class I-specific Rossmann fold domain and the intervening subclass-specific alpha/beta domain. These domains were found to have two GluRS-specific, secondary-structure insertions, which then participated in the specific recognition of the D and acceptor stems of tRNA(Glu) as indicated by mutagenesis analyses based on the docking properties of GluRS and tRNA. In striking contrast to the beta-barrel structure of the GlnRS carboxyl-terminal half, the GluRS carboxyl-terminal half displayed an all-alpha-helix architecture, an alpha-helix cage, and mutagenesis analyses indicated that it had a role in the anticodon recognition.


Assuntos
Glutamato-tRNA Ligase/química , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Anticódon , Evolução Biológica , Gráficos por Computador , Cristalografia por Raios X , Escherichia coli/enzimologia , Glutamato-tRNA Ligase/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA de Transferência de Ácido Glutâmico/química , RNA de Transferência de Ácido Glutâmico/metabolismo , Alinhamento de Sequência
2.
Science ; 280(5363): 578-82, 1998 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-9554847

RESUMO

High-fidelity transfers of genetic information in the central dogma can be achieved by a reaction called editing. The crystal structure of an enzyme with editing activity in translation is presented here at 2.5 angstroms resolution. The enzyme, isoleucyl-transfer RNA synthetase, activates not only the cognate substrate L-isoleucine but also the minimally distinct L-valine in the first, aminoacylation step. Then, in a second, "editing" step, the synthetase itself rapidly hydrolyzes only the valylated products. For this two-step substrate selection, a "double-sieve" mechanism has already been proposed. The present crystal structures of the synthetase in complexes with L-isoleucine and L-valine demonstrate that the first sieve is on the aminoacylation domain containing the Rossmann fold, whereas the second, editing sieve exists on a globular beta-barrel domain that protrudes from the aminoacylation domain.


Assuntos
Isoleucina-tRNA Ligase/química , Isoleucina/metabolismo , Valina/metabolismo , Monofosfato de Adenosina , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/enzimologia , Ligação de Hidrogênio , Hidrólise , Isoleucina-tRNA Ligase/metabolismo , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , RNA de Transferência de Isoleucina/metabolismo , Especificidade por Substrato , Thermus thermophilus/enzimologia , Aminoacilação de RNA de Transferência
3.
Structure ; 9(12): 1253-63, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11738050

RESUMO

BACKGROUND: The AU binding homolog of enoyl-CoA hydratase (AUH) is a bifunctional protein that has two distinct activities: AUH binds to RNA and weakly catalyzes the hydration of 2-trans-enoyl-coenzyme A (enoyl-CoA). AUH has no sequence similarity with other known RNA binding proteins, but it has considerable sequence similarity with enoyl-CoA hydratase. A segment of AUH, named the R peptide, binds to RNA. However, the mechanism of the RNA binding activity of AUH remains to be elucidated. RESULTS: We determined the crystal structure of human AUH at 2.2 A resolution. AUH adopts the typical fold of the enoyl-CoA hydratase/isomerase superfamily and forms a hexamer as a dimer of trimers. Interestingly, the surface of the AUH hexamer is positively charged, in striking contrast to the negatively charged surfaces of the other members of the superfamily. Furthermore, wide clefts are uniquely formed between the two trimers of AUH and are highly positively charged with the Lys residues in alpha helix H1, which is located on the edge of the cleft and contains the majority of the R peptide. A mutational analysis showed that the lysine residues in alpha helix H1 are essential to the RNA binding activity of AUH. CONCLUSIONS: Alpha helix H1 exposes a row of Lys residues on the solvent-accessible surface. These characteristic Lys residues are named the "lysine comb." The distances between these Lys residues are similar to those between the RNA phosphate groups, suggesting that the lysine comb may continuously bind to a single-stranded RNA. The clefts between the trimers may provide spaces sufficient to accommodate the RNA bases.


Assuntos
Enoil-CoA Hidratase/química , Proteínas de Ligação a RNA/química , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Cristalografia por Raios X , Análise Mutacional de DNA , DNA Complementar/metabolismo , Dimerização , Glutationa Transferase/metabolismo , Humanos , Lisina/química , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos
4.
Structure ; 8(2): 197-208, 2000 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-10673435

RESUMO

BACKGROUND: The 20 aminoacyl-tRNA synthetases are divided into two classes, I and II. The 10 class I synthetases are considered to have in common the catalytic domain structure based on the Rossmann fold, which is totally different from the class II catalytic domain structure. The class I synthetases are further divided into three subclasses, a, b and c, according to sequence homology. No conserved structural features for tRNA recognition by class I synthetases have been established. RESULTS: We determined the crystal structure of the class Ia methionyl-tRNA synthetase (MetRS) at 2.0 A resolution, using MetRS from an extreme thermophile, Thermus thermophilus HB8. The T. thermophilus MetRS structure is in full agreement with the biochemical and genetic data from Escherichia coli MetRS. The conserved 'anticodon-binding' residues are spatially clustered on an alpha-helix-bundle domain. The Rossmann-fold and anticodon-binding domains are connected by a beta-alpha-alpha-beta-alpha topology ('SC fold') domain that contains the class I specific KMSKS motif. CONCLUSIONS: The alpha-helix-bundle domain identified in the MetRS structure is the signature of the class Ia enzymes, as it was also identified in the class Ia structures of the isoleucyl- and arginyl-tRNA synthetases. The beta-alpha-alpha-beta-alpha topology domain, which can now be identified in all known structures of the class Ia and Ib synthetases, is likely to dock with the inner side of the L-shaped tRNA, thereby positioning the anticodon stem.


Assuntos
Metionina tRNA Ligase/química , Proteínas de Ligação a RNA/química , Thermus thermophilus/química , Anticódon , Domínio Catalítico , Cristalografia por Raios X , Metionina tRNA Ligase/metabolismo , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Proteínas de Ligação a RNA/metabolismo
5.
J Mol Biol ; 236(3): 710-24, 1994 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-8114089

RESUMO

Molecular recognition of Escherichia coli tRNA(Ile) by the cognate isoleucyl-tRNA synthetase (IleRS) was studied by analyses of chemical footprinting with N-nitroso-N-ethylurea and aminoacylation kinetics of variant tRNA(Ile) transcripts prepared with bacteriophage T7 RNA polymerase. IleRS binds to the acceptor, dihydrouridine (D), and anticodon stems as well as to the anticodon loop. The "complete set" of determinants for the tRNA(Ile) identity consists of most of the nucleotides in the anticodon loop (G34, A35, U36, t6A37 and A38), the discriminator nucleotide (A73), and the base-pairs in the middle of the anticodon, D and acceptor stems (C29.G41, U12.A23 and C4.G69, respectively). As for the tertiary base-pairs, two are indispensable for the isoleucylation activity, whereas the others are dispensable. Correspondingly, some of the phosphate groups of these dispensable tertiary base-pair residues were shown to be exposed to N-nitroso-N-ethylurea when tRNA(Ile) was bound with IleRS. Furthermore, deletion of the T psi C-arm only slightly impaired the tRNA(Ile) activity. Thus, it is proposed that the recognition by IleRS of all the widely distributed identity determinants is coupled with a global conformational change that involves the loosening of a particular set of tertiary base-pairs of tRNA(Ile).


Assuntos
Escherichia coli/metabolismo , Isoleucina-tRNA Ligase/metabolismo , Conformação de Ácido Nucleico , RNA de Transferência de Isoleucina/química , Anticódon/química , Composição de Bases , Sequência de Bases , Sítios de Ligação , Gráficos por Computador , Escherichia coli/genética , Genes Bacterianos , Genes Sintéticos , Modelos Moleculares , Dados de Sequência Molecular , Desnaturação de Ácido Nucleico , RNA de Transferência de Isoleucina/metabolismo
6.
J Mol Biol ; 294(5): 1287-97, 1999 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-10600385

RESUMO

The 3D structure of monomeric C-truncated Escherichia coli methionyl-tRNA synthetase, a class 1 aminoacyl-tRNA synthetase, has been solved at 2.0 A resolution. Remarkably, the polypeptide connecting the two halves of the Rossmann fold exposes two identical knuckles related by a 2-fold axis but with zinc in the distal knuckle only. Examination of available MetRS orthologs reveals four classes according to the number and zinc content of the putative knuckles. Extreme cases are exemplified by the MetRS of eucaryotic or archaeal origin, where two knuckles and two metal ions are expected, and by the mitochondrial enzymes, which are predicted to have one knuckle without metal ion.


Assuntos
Escherichia coli/enzimologia , Metionina tRNA Ligase/química , Metionina tRNA Ligase/classificação , Sequência de Aminoácidos , Animais , Anticódon/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , RNA de Transferência/química , RNA de Transferência/metabolismo , Alinhamento de Sequência , Eletricidade Estática , Zinco/metabolismo
7.
J Mol Biol ; 256(4): 685-700, 1996 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-8642591

RESUMO

By a kinetic analysis of 59 variant transcripts of Escherichia coli tRNA(Glu) with glutamyl-tRNA synthetase (GluRS), the U11.A24 base-pair, the U13.G22..A46 base-triple, and the lack of residue 47 (delta47) were found to serve as major determinants for tRNA(Glu) identity. This is the first system for which major identity determinants are reported to be clustered in the "augmented D helix", consisting of the D stem with some neighboring residues and the variable loop. Other identity determinants are U34, U35, C36 and A37 in the anticodon loop, and G1.C72 and U2.A71 in the acceptor stem. Phosphate-group protection by GluRS from ethylnitrosourea was observed most strongly for the minor groove side of D-stem helix, indicating that GluRs tightly binds to the D stem for recognition, on the minor groove side, of the potent identity-determinant groups of the U11.A24 and U13.G22 base-pairs. A46 is not involved in direct recognition by GluRS; the U13.G22..A46 base-triple is required probably for formation of the structural features that are recognized by GluRS. In this context, the essential role of characteristic delta47 in tRNA(Glu) identity may be to maintain the U13.G22..A46 base-triple.


Assuntos
Escherichia coli/química , Conformação de Ácido Nucleico , RNA de Transferência de Ácido Glutâmico/química , Anticódon/genética , Composição de Bases , Sequência de Bases , Clonagem Molecular , Códon/genética , Eletroforese em Gel de Poliacrilamida , Etilnitrosoureia/metabolismo , Glutamato-tRNA Ligase/metabolismo , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Oligorribonucleotídeos/química , Ligação Proteica , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
FEBS Lett ; 377(1): 77-81, 1995 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-8543024

RESUMO

A docking model of glutamyl-tRNA synthetase (GluRS) and tRNAGlu was constructed, on the basis of the distinguished similarity between the X-ray crystallographic three-dimensional structures of the N-terminal halves of the Thermus thermophilus GluRS in the free state and the Escherichia coli glutaminyl-tRNA synthetase in a complex with tRNAGln. The modeled structure is energetically favorable and is also well consistent with the results of site-directed mutagenesis studies. The model indicates that the GluRS-specific insertions 2 and 3 fit and bind to the acceptor stem and the D arm, respectively, of the cognate tRNA without affecting other contacts. In particular, insertion 3 strongly interacts with the two D-stem base pairs that are essential for the tRNA-GluRS recognition.


Assuntos
Glutamato-tRNA Ligase/química , Modelos Moleculares , RNA de Transferência de Ácido Glutâmico/química , Anticódon , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/enzimologia , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo , Termodinâmica , Thermus thermophilus/enzimologia
9.
J Biochem ; 130(6): 727-30, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11726270

RESUMO

At the initiation of chromosomal DNA replication, DNA primases synthesize short RNA primers, which are subsequently elongated by DNA polymerases. To understand the structural basis for the primer synthesis by archaeal/eukaryotic-type primases, the gene of the DNA primase from hyperthermophilic archaeon Pyrococcus horikoshii was cloned and overexpressed in Escherichia coli as a fusion protein with a hexa-histidine tag at its amino terminus. The recombinant DNA primase was purified and crystallized by the hanging-drop vapor diffusion method at 293 K, with polyethylene glycol 8000 as the precipitant. The crystals belong to the P3(2)21 space group with unit-cell parameters a = b = 77.8, c = 129.6 A, and alpha = beta = 90 degrees, gamma = 120 degrees. Crystals of the selenomethionine derivative were obtained by means of a cross-seeding method using native crystals. The data for the native and selenomethionine-substituted crystals were collected to 1.8 and 2.2 A resolution, respectively, with synchrotron radiation at SPring-8 under flash-frozen conditions at 100 K. The four wavelength MAD data provided a phase to determine the structure of the primase at 2.2 A resolution.


Assuntos
Cristalografia por Raios X/métodos , DNA Primase/química , Pyrococcus/enzimologia , Substituição de Aminoácidos , Cristalização , DNA Primase/isolamento & purificação , DNA Primase/metabolismo , Conformação Proteica , RNA/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Selenometionina/química
10.
J Biochem ; 127(2): 181-4, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10731682

RESUMO

The cell surface antigen CD38 is a multifunctional ectoenzyme that acts as an NAD(+) glycohydrolase, an ADP-ribosyl cyclase, and also a cyclic ADP-ribose hydrolase. The extracellular catalytic domain of CD38 was expressed as a fusion protein with maltose-binding protein, and was crystallized in the complex with a ganglioside, G(T1b), one of the possible physiological inhibitors of this ectoenzyme. Two different crystal forms were obtained using the hanging-drop vapor diffusion method with PEG 10,000 as the precipitant. One form diffracted up to 2.4 A resolution with synchrotron radiation at 100 K, but suffered serious X-ray damage. It belongs to the space group P2(1)2(1)2(1) with unit-cell parameters of a = 47.9, b = 94.9, c = 125.2 A. The other form is a thin plate, but the data sets were successfully collected up to 2.4 A resolution by use of synchrotron radiation at 100 K. The crystals belong to the space group P2(1) with unit-cell parameters of a = 57.4, b = 51.2, c = 101.1 A, and beta = 97.9 degrees, and contain one molecule per asymmetric unit with a VM value of 2.05 A(3)/Da.


Assuntos
Antígenos CD , Antígenos de Diferenciação/química , Antígenos de Diferenciação/metabolismo , Gangliosídeos/química , Gangliosídeos/metabolismo , NAD+ Nucleosidase/química , NAD+ Nucleosidase/metabolismo , ADP-Ribosil Ciclase , ADP-Ribosil Ciclase 1 , Antígenos de Diferenciação/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalização , Proteínas Ligantes de Maltose , NAD+ Nucleosidase/genética , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Difração de Raios X
13.
J Biol Chem ; 276(50): 47387-93, 2001 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-11584022

RESUMO

An analogue of isoleucyl-adenylate (Ile-AMS) potently inhibits the isoleucyl-tRNA synthetases (IleRSs) from the three primary kingdoms, whereas the antibiotic mupirocin inhibits only the eubacterial and archaeal IleRSs, but not the eukaryotic enzymes, and therefore is clinically used against methicillin-resistant Staphylococcus aureus. We determined the crystal structures of the IleRS from the thermophilic eubacterium, Thermus thermophilus, in complexes with Ile-AMS and mupirocin at 3.0- and 2.5-A resolutions, respectively. A structural comparison of the IleRS.Ile-AMS complex with the adenylate complexes of other aminoacyl-tRNA synthetases revealed the common recognition mode of aminoacyl-adenylate by the class I aminoacyl-tRNA synthetases. The Ile-AMS and mupirocin, which have significantly different chemical structures, are recognized by many of the same amino acid residues of the IleRS, suggesting that the antibiotic inhibits the enzymatic activity by blocking the binding site of the high energy intermediate, Ile-AMP. In contrast, the two amino acid residues that concomitantly recognize Ile-AMS and mupirocin are different between the eubacterial/archaeal IleRSs and the eukaryotic IleRSs. Mutagenic analyses revealed that the replacement of the two residues significantly changed the sensitivity to mupirocin.


Assuntos
Monofosfato de Adenosina/química , Antibacterianos/química , Antibacterianos/farmacologia , Isoleucina-tRNA Ligase/metabolismo , Isoleucina/química , Mupirocina/química , Mupirocina/farmacologia , Sequência de Aminoácidos , Aminoácidos/química , Aminoacil-tRNA Sintetases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Ácidos Graxos/química , Concentração Inibidora 50 , Cinética , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfatos/química , Conformação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Staphylococcus aureus/metabolismo , Thermus thermophilus
14.
Eur J Biochem ; 261(2): 354-60, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10215844

RESUMO

We previously elucidated the major determinant set for Escherichia coli tRNAGlu identity (U34, U35, C36, A37, G1*C72, U2*A71, U11*A24, U13*G22**Alpha46, and Delta47) and showed that the set is sufficient to switch the identity of tRNAGln to Glu [Sekine, S., Nureki, O., Sakamoto, K., Niimi, T., Tateno, M., Go, M., Kohno, T., Brisson, A., Lapointe, J. & Yokoyama, S. (1996) J. Mol. Biol. 256, 685-700]. In the present study, we attempted to switch the identity of tRNAAsp, which has a sequence similar to that of tRNAGlu, and consequently possesses many nucleotide residues corresponding to the Glu identity determinants (U35, C36, A37, G1*C72, and U11*A24). A simple transplantation of the rest of the major determinants (U34, U2*A71, U13*G22**Alpha46, and Delta47) to the framework of tRNAAsp did not result in a sufficient switch of the tRNAAsp identity to Glu. To confer an optimal glutamate accepting activity to tRNAAsp, two other elements, C4*G69 in the middle of the acceptor stem and C12*G23**C9 in the augmented D helix, were required. Consistently, the two base pairs, C4*G69 and C12*G23, in tRNAGlu had been shown to exist in the interface with glutamyl-tRNA synthetase (GluRS) by phosphate-group footprinting. We also found the two elements in the framework of tRNAGln, and determined that their contributions successfully changed the identity of tRNAGln to Glu in the previous study. By the identity-determinant set (C4*G69 and C12*G23**C9 in addition to U34, U35, C36, A37, G1*C72, U2*A71, U11*A24, U13*G22**Alpha46, and Delta47) the activity of GluRS was optimized and efficient discrimination from the noncognate tRNAs was achieved.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Escherichia coli/enzimologia , RNA de Transferência de Ácido Aspártico/química , RNA de Transferência de Ácido Glutâmico/química , Acilação , Clonagem Molecular , Cinética , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , RNA de Transferência de Ácido Aspártico/genética , RNA de Transferência de Ácido Glutâmico/genética , Especificidade por Substrato
15.
Proc Natl Acad Sci U S A ; 98(24): 13537-42, 2001 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-11698642

RESUMO

Arginyl-tRNA synthetase (ArgRS) recognizes two major identity elements of tRNA(Arg): A20, located at the outside corner of the L-shaped tRNA, and C35, the second letter of the anticodon. Only a few exceptional organisms, such as the yeast Saccharomyces cerevisiae, lack A20 in tRNA(Arg). In the present study, we solved the crystal structure of a typical A20-recognizing ArgRS from Thermus thermophilus at 2.3 A resolution. The structure of the T. thermophilus ArgRS was found to be similar to that of the previously reported S. cerevisiae ArgRS, except for short insertions and a concomitant conformational change in the N-terminal domain. The structure of the yeast ArgRS.tRNA(Arg) complex suggested that two residues in the unique N-terminal domain, Tyr(77) and Asn(79), which are phylogenetically invariant in the ArgRSs from all organisms with A20 in tRNA(Arg)s, are involved in A20 recognition. However, in a docking model constructed based on the yeast ArgRS.tRNA(Arg) and T. thermophilus ArgRS structures, Tyr(77) and Asn(79) are not close enough to make direct contact with A20, because of the conformational change in the N-terminal domain. Nevertheless, the replacement of Tyr(77) or Asn(79) by Ala severely reduced the arginylation efficiency. Therefore, some conformational change around A20 is necessary for the recognition. Surprisingly, the N79D mutant equally recognized A20 and G20, with only a slight reduction in the arginylation efficiency as compared with the wild-type enzyme. Other mutants of Asn(79) also exhibited broader specificity for the nucleotide at position 20 of tRNA(Arg). We propose a model of A20 recognition by the ArgRS that is consistent with the present results of the mutational analyses.


Assuntos
Arginina-tRNA Ligase/química , Conformação de Ácido Nucleico , RNA de Transferência de Arginina/química , Aminoácidos , Arginina-tRNA Ligase/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Mutagênese , Conformação Proteica , RNA de Transferência de Arginina/metabolismo , Saccharomyces cerevisiae/enzimologia , Thermus thermophilus/enzimologia
16.
Acta Crystallogr D Biol Crystallogr ; 57(Pt 2): 272-5, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11173477

RESUMO

The gene encoding the highly thermostable arginyl-tRNA synthetase (ArgRS) from Thermus thermophilus was cloned and overexpressed in Escherichia coli under the control of the T7 promoter. The recombinant ArgRS was purified by two chromatographic steps and was crystallized by the hanging-drop vapour-diffusion method using PEG 8000 and ethylene glycol as precipitants. The crystals belong to the hexagonal space group P6(5), with unit-cell parameters a = b = 156.04 (7), c = 87.17 (4) A. X-ray data to 2.8 A resolution were collected at room temperature from a native crystal using an in-house X-ray source. Uranium, platinum and selenomethionine derivatives were found to be useful for phasing by the multiple isomorphous replacement method with anomalous scattering. The flash-frozen crystals diffracted beyond 2.3 A resolution using synchrotron radiation from the beamline 41XU at SPring-8 (Harima).


Assuntos
Arginina-tRNA Ligase/química , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Arginina-tRNA Ligase/genética , Arginina-tRNA Ligase/isolamento & purificação , Clonagem Molecular , Escherichia coli , Etilenoglicol , Indicadores e Reagentes , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Polietileno , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Thermus thermophilus/genética
17.
Nat Struct Biol ; 8(3): 203-6, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11224561

RESUMO

Glutamyl-tRNA synthetases (GluRSs) are divided into two distinct types, with regard to the presence or absence of glutaminyl-tRNA synthetase (GlnRS) in the genetic translation systems. In the original 19-synthetase systems lacking GlnRS, the 'non-discriminating' GluRS glutamylates both tRNAGlu and tRNAGln. In contrast, in the evolved 20-synthetase systems with GlnRS, the 'discriminating' GluRS aminoacylates only tRNAGlu. Here we report the 2.4 A resolution crystal structure of a 'discriminating' GluRS.tRNAGlu complex from Thermus thermophilus. The GluRS recognizes the tRNAGlu anticodon bases via two alpha-helical domains, maintaining the base stacking. We show that the discrimination between the Glu and Gln anticodons (34YUC36 and 34YUG36, respectively) is achieved by a single arginine residue (Arg 358). The mutation of Arg 358 to Gln resulted in a GluRS that does not discriminate between the Glu and Gln anticodons. This change mimics the reverse course of GluRS evolution from anticodon 'non-dicsriminating' to 'discriminating'.


Assuntos
Anticódon/química , Anticódon/metabolismo , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/metabolismo , Thermus thermophilus/enzimologia , Thermus thermophilus/genética , Anticódon/genética , Sítios de Ligação , Cristalografia por Raios X , Evolução Molecular , Glutamato-tRNA Ligase/genética , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Mutação Puntual/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA de Transferência de Ácido Glutâmico/química , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
18.
J Biol Chem ; 268(21): 15368-73, 1993 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-8340367

RESUMO

Thermus thermophilus methionyl-tRNA synthetase consists of two identical subunits with a potential Zn(2+)-binding sequence of Cys-X2-Cys-X13-Cys-X2-His (Nureki, O., Muramatsu, T., Suzuki, K., Kohda, D., Matsuzawa, H., Ohta, T. Miyazawa, T., and Yokoyama, S. (1991) J. Biol. Chem. 266, 3268-3277). Upon chemical modification of the 3 Cys residues of T. thermophilus MetRS with sodium p-(hydroxymercuri)phenylsulfonate, one Zn2+ ion was released from one subunit of the molecule, as monitored with 4-(2-pyridylazo)resorcinol. Site-directed mutagenesis of Cys and His residues in the Zn(2+)-binding sequence reduced the aminoacylation activity; the kcat value was markedly decreased, and the Km values for L-methionine and tRNAf(Met) were increased. Similarly, Cys modification released two Zn2+ ions from T. thermophilus and Escherichia coli isoleucyl-tRNA synthetases and E. coli threonyl-tRNA synthetase, which have Zn(2+)-binding motifs, and impaired their activities. By contrast, three other aminoacyl-tRNA synthetases that lack Zn(2+)-binding motif neither released Zn2+ ion nor lost their activities upon Cys modification. These results indicate that the Zn(2+)-binding sequences are important for catalysis and recognition in the aminoacylation reactions of a subgroup of aminoacyl-tRNA synthetases.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Mutagênese , Zinco/metabolismo , Acilação , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Escherichia coli/enzimologia , Dados de Sequência Molecular , Compostos de Fenilmercúrio/química , Thermus thermophilus/enzimologia
19.
J Biol Chem ; 276(6): 3723-6, 2001 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-11106639

RESUMO

The presence of two short signature sequence motifs (His-Ile-Gly-His (HIGH) and Lys-Met-Ser-Lys (KMSK)) is a characteristic of the class I aminoacyl-tRNA synthetases. These motifs constitute a portion of the catalytic site in three dimensions and play an important role in catalysis. In particular, the second lysine of the KMSK motif (K2) is the crucial catalytic residue for stabilization of the transition state of the amino acid activation reaction (aminoacyl-adenylate formation). Arginyl-tRNA synthetase (ArgRS) is unique among all of the class I enyzmes, as the majority of ArgRS species lack canonical KMSK sequences. Thus, the mechanism by which this group of ArgRSs achieves the catalytic reaction is not well understood. Using three-dimensional modeling in combination with sequence analysis and site-directed mutagenesis, we found a conserved lysine in the KMSK-lacking ArgRSs upstream of the HIGH sequence motif, which is likely to be a functional counterpart of the canonical class I K2 lysine. The results suggest a plausible partition of the ArgRSs into two major groups, on the basis of the conservation of the HIGH lysine.


Assuntos
Arginina-tRNA Ligase/metabolismo , Lisina/metabolismo , Sequência de Aminoácidos , Arginina-tRNA Ligase/química , Catálise , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
20.
Nucleic Acids Symp Ser ; (25): 165-6, 1991.
Artigo em Inglês | MEDLINE | ID: mdl-1726806

RESUMO

Interactions of Escherichia coli isoleucyl- and glutamyl-tRNA synthetases and their cognate tRNAs were analyzed by phosphate-alkylation mapping with N-nitroso-N-ethylurea and/or by 1H-NMR analysis. When E. coli tRNA(Ile) was bound with isoleucyl-tRNA synthetase, many of the phosphate groups in the anticodon loop and stem and in the D-stem were protected from alkylation. This result is consistent with that of analysis of imino proton resonances due to the secondary and tertiary base pairs. These analyses also suggested that the L-shaped tertiary structure of tRNA(Ile) is distorted upon complex formation with IleRS because of disruption of some tertiary base pairs. In the case of E. coli tRNA(Glu), several phosphate groups in the D-stem and the variable loop were significantly protected by the cognate synthetase. These results indicate that the two tRNAs, unlike other tRNAs studied so far, have some of the "identity determinants" in the D-stem and/or in the anticodon stem.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , RNA de Transferência/metabolismo , Alquilação , Anticódon , Sequência de Bases , Escherichia coli/genética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Bacteriano/metabolismo , RNA de Transferência/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA