Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 184(11): 3022-3040.e28, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33961781

RESUMO

Thousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins-half the proteome-in 293T cells and includes 118,162 interactions among 14,586 proteins. The second results from 5,522 immunoprecipitations in HCT116 cells. These networks model the interactome whose structure encodes protein function, localization, and complex membership. Comparison across cell lines validates thousands of interactions and reveals extensive customization. Whereas shared interactions reside in core complexes and involve essential proteins, cell-specific interactions link these complexes, "rewiring" subnetworks within each cell's interactome. Interactions covary among proteins of shared function as the proteome remodels to produce each cell's phenotype. Viewable interactively online through BioPlexExplorer, these networks define principles of proteome organization and enable unknown protein characterization.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/genética , Proteoma/genética , Biologia Computacional/métodos , Células HCT116/metabolismo , Células HEK293/metabolismo , Humanos , Espectrometria de Massas/métodos , Mapas de Interação de Proteínas/fisiologia , Proteoma/metabolismo , Proteômica/métodos
2.
Cell ; 180(2): 387-402.e16, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31978347

RESUMO

Proteins are essential agents of biological processes. To date, large-scale profiling of cell line collections including the Cancer Cell Line Encyclopedia (CCLE) has focused primarily on genetic information whereas deep interrogation of the proteome has remained out of reach. Here, we expand the CCLE through quantitative profiling of thousands of proteins by mass spectrometry across 375 cell lines from diverse lineages to reveal information undiscovered by DNA and RNA methods. We observe unexpected correlations within and between pathways that are largely absent from RNA. An analysis of microsatellite instable (MSI) cell lines reveals the dysregulation of specific protein complexes associated with surveillance of mutation and translation. These and other protein complexes were associated with sensitivity to knockdown of several different genes. These data in conjunction with the wider CCLE are a broad resource to explore cellular behavior and facilitate cancer research.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/metabolismo , Proteoma/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Humanos , Espectrometria de Massas/métodos , Instabilidade de Microssatélites , Mutação/genética , Proteômica/métodos
3.
Cell ; 157(6): 1460-1472, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24906157

RESUMO

A systematic quantitative analysis of temporal changes in host and viral proteins throughout the course of a productive infection could provide dynamic insights into virus-host interaction. We developed a proteomic technique called "quantitative temporal viromics" (QTV), which employs multiplexed tandem-mass-tag-based mass spectrometry. Human cytomegalovirus (HCMV) is not only an important pathogen but a paradigm of viral immune evasion. QTV detailed how HCMV orchestrates the expression of >8,000 cellular proteins, including 1,200 cell-surface proteins to manipulate signaling pathways and counterintrinsic, innate, and adaptive immune defenses. QTV predicted natural killer and T cell ligands, as well as 29 viral proteins present at the cell surface, potential therapeutic targets. Temporal profiles of >80% of HCMV canonical genes and 14 noncanonical HCMV open reading frames were defined. QTV is a powerful method that can yield important insights into viral infection and is applicable to any virus with a robust in vitro model.


Assuntos
Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Interações Hospedeiro-Patógeno , Proteômica , Virologia/métodos , Humanos , Evasão da Resposta Imune , Células Matadoras Naturais/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Proteínas Virais/análise
4.
J Proteome Res ; 18(3): 1299-1306, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30658528

RESUMO

Quantitative proteomics employing isobaric reagents has been established as a powerful tool for biological discovery. Current workflows often utilize a dedicated quantitative spectrum to improve quantitative accuracy and precision. A consequence of this approach is a dramatic reduction in the spectral acquisition rate, which necessitates the use of additional instrument time to achieve comprehensive proteomic depth. This work assesses the performance and benefits of online and real-time spectral identification in quantitative multiplexed workflows. A Real-Time Search (RTS) algorithm was implemented to identify fragment spectra within milliseconds as they are acquired using a probabilistic score and to trigger quantitative spectra only upon confident peptide identification. The RTS-MS3 was benchmarked against standard workflows using a complex two-proteome model of interference and a targeted 10-plex comparison of kinase abundance profiles. Applying the RTS-MS3 method provided the comprehensive characterization of a 10-plex proteome in 50% less acquisition time. These data indicate that the RTS-MS3 approach provides dramatic performance improvements for quantitative multiplexed experiments.


Assuntos
Peptídeos/isolamento & purificação , Proteoma/isolamento & purificação , Proteômica/métodos , Algoritmos , Bases de Dados Factuais , Humanos , Peptídeos/química , Proteoma/química , Espectrometria de Massas em Tandem , Fluxo de Trabalho
5.
Dev Biol ; 378(1): 38-50, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23499656

RESUMO

The Drosophila wing imaginal disc is subdivided along the proximodistal axis into the distal pouch, the hinge, the surrounding pleura, and the notum. While the genetic pathways that specify the identity of each of these domains have been well studied, the mechanisms that coordinate the relative expansion of these domains are not well understood. Here we investigated the role of the stat92E signal transducer and activator of transcription in wing proximodistal development. We find that stat92E is active ubiquitously in early wing imaginal discs, where it acts to inhibit the induction of ectopic wing fields. Subsequently, stat92E activity is down regulated in the notum and distal pouch. These dynamics coincide with and contribute to the proportional subdivision and expansion of these primordia. As development proceeds, stat92E activity becomes restricted to the hinge, where it promotes normal expansion of the hinge, and restricts expansion of the notum. We also find that stat92E is required autonomously to specify dorsal pleura identity and inhibit notum identity to properly subdivide the body wall. Our data suggest that stat92E activity is regulated along the proximodistal axis to pattern this axis and control the relative expansion of the pouch, hinge, and notum.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/embriologia , Fatores de Transcrição STAT/fisiologia , Asas de Animais/embriologia , Alelos , Animais , Padronização Corporal , Proliferação de Células , Proteínas de Drosophila/genética , Proteínas de Fluorescência Verde/metabolismo , Janus Quinase 1/metabolismo , Microscopia de Fluorescência , Mutação , Fatores de Transcrição STAT/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transgenes
6.
Anal Chem ; 86(14): 7150-8, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24927332

RESUMO

Multiplexed quantitation via isobaric chemical tags (e.g., tandem mass tags (TMT) and isobaric tags for relative and absolute quantitation (iTRAQ)) has the potential to revolutionize quantitative proteomics. However, until recently the utility of these tags was questionable due to reporter ion ratio distortion resulting from fragmentation of coisolated interfering species. These interfering signals can be negated through additional gas-phase manipulations (e.g., MS/MS/MS (MS3) and proton-transfer reactions (PTR)). These methods, however, have a significant sensitivity penalty. Using isolation waveforms with multiple frequency notches (i.e., synchronous precursor selection, SPS), we coisolated and cofragmented multiple MS2 fragment ions, thereby increasing the number of reporter ions in the MS3 spectrum 10-fold over the standard MS3 method (i.e., MultiNotch MS3). By increasing the reporter ion signals, this method improves the dynamic range of reporter ion quantitation, reduces reporter ion signal variance, and ultimately produces more high-quality quantitative measurements. To demonstrate utility, we analyzed biological triplicates of eight colon cancer cell lines using the MultiNotch MS3 method. Across all the replicates we quantified 8,378 proteins in union and 6,168 proteins in common. Taking into account that each of these quantified proteins contains eight distinct cell-line measurements, this data set encompasses 174,704 quantitative ratios each measured in triplicate across the biological replicates. Herein, we demonstrate that the MultiNotch MS3 method uniquely combines multiplexing capacity with quantitative sensitivity and accuracy, drastically increasing the informational value obtainable from proteomic experiments.


Assuntos
Neoplasias do Colo/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Algoritmos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/métodos , Células HeLa , Humanos , Íons , Isocitrato Desidrogenase/análise , Isocitrato Desidrogenase/metabolismo , Análise de Componente Principal , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Proteína Smad4/análise , Proteína Smad4/metabolismo , Espectrometria de Massas em Tandem/instrumentação
7.
Bioinformatics ; 28(23): 3115-22, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23060611

RESUMO

MOTIVATION: Proteomics presents the opportunity to provide novel insights about the global biochemical state of a tissue. However, a significant problem with current methods is that shotgun proteomics has limited success at detecting many low abundance proteins, such as transcription factors from complex mixtures of cells and tissues. The ability to assay for these proteins in the context of the entire proteome would be useful in many areas of experimental biology. RESULTS: We used network-based inference in an approach named SNIPE (Software for Network Inference of Proteomics Experiments) that selectively highlights proteins that are more likely to be active but are otherwise undetectable in a shotgun proteomic sample. SNIPE integrates spectral counts from paired case-control samples over a network neighbourhood and assesses the statistical likelihood of enrichment by a permutation test. As an initial application, SNIPE was able to select several proteins required for early murine tooth development. Multiple lines of additional experimental evidence confirm that SNIPE can uncover previously unreported transcription factors in this system. We conclude that SNIPE can enhance the utility of shotgun proteomics data to facilitate the study of poorly detected proteins in complex mixtures. AVAILABILITY AND IMPLEMENTATION: An implementation for the R statistical computing environment named snipeR has been made freely available at http://genetics.bwh.harvard.edu/snipe/. CONTACT: ssunyaev@rics.bwh.harvard.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Proteoma/análise , Proteômica/métodos , Software , Animais , Biologia Computacional/métodos , Camundongos , Dente/metabolismo
8.
J Proteome Res ; 10(2): 812-23, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21133377

RESUMO

A precise mixture of extracellular matrix (ECM) secreted by valvular cells forms a scaffold that lends the heart valve the exact mechanical and tensile strength needed for accurate hemodynamic performance. ECM proteins are a key component of valvular endothelial cell (VEC)-valvular interstitial cell (VIC) communication essential for maintenance of the valve structure. This study reports the healthy adult pulmonary and aortic valve proteomes characterized by LC-MS/MS, resulting in 2710 proteins expressed by 1513 genes, including over 300 abundant ECM proteins. Surprisingly, this study defines a distinct proteome for each semilunar valve. Protein-protein networking (PPN) was used as a tool to direct selection of proteomic candidates for biological investigation. Local PPN for nidogen 1 (Nid1), biglycan (Bgn), elastin microfibril interface-located protein 1 (Emilin-1), and milk fat globule-EGF factor 8 protein (Mfge8) were enriched with proteins essential to valve function and produced biological functions highly relevant to valve biology. Immunofluorescent investigations demonstrated that these proteins are functionally distributed within the pulmonary and aortic valve structure, indicative of important contribution to valve function. This study yields new insight into protein expression contributing to valvular maintenance and health and provides a platform for unbiased assessment of protein alterations during disease processes.


Assuntos
Valva Aórtica/química , Proteínas da Matriz Extracelular/química , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Valva Pulmonar/química , Animais , Valva Aórtica/metabolismo , Cromatografia Líquida , Proteínas da Matriz Extracelular/metabolismo , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência , Proteoma/química , Proteoma/metabolismo , Valva Pulmonar/metabolismo , Transdução de Sinais/fisiologia , Espectrometria de Massas em Tandem
9.
Nat Biotechnol ; 39(5): 630-641, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33398154

RESUMO

Current methods used for measuring amino acid side-chain reactivity lack the throughput needed to screen large chemical libraries for interactions across the proteome. Here we redesigned the workflow for activity-based protein profiling of reactive cysteine residues by using a smaller desthiobiotin-based probe, sample multiplexing, reduced protein starting amounts and software to boost data acquisition in real time on the mass spectrometer. Our method, streamlined cysteine activity-based protein profiling (SLC-ABPP), achieved a 42-fold improvement in sample throughput, corresponding to profiling library members at a depth of >8,000 reactive cysteine sites at 18 min per compound. We applied it to identify proteome-wide targets of covalent inhibitors to mutant Kirsten rat sarcoma (KRAS)G12C and Bruton's tyrosine kinase (BTK). In addition, we created a resource of cysteine reactivity to 285 electrophiles in three human cell lines, which includes >20,000 cysteines from >6,000 proteins per line. The goal of proteome-wide profiling of cysteine reactivity across thousand-member libraries under several cellular contexts is now within reach.


Assuntos
Aminoácidos/genética , Elementos de Resposta Antioxidante/genética , Cisteína/genética , Proteoma/genética , Tirosina Quinase da Agamaglobulinemia/genética , Humanos , Espectrometria de Massas , Proteômica/tendências , Proteínas Proto-Oncogênicas p21(ras)/genética
10.
Cell Rep ; 29(7): 2092-2104.e4, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31722220

RESUMO

Governance of protein phosphorylation by kinases and phosphatases constitutes an essential regulatory network in eukaryotic cells. Network dysregulation leads to severe consequences and is often a key factor in disease pathogenesis. Previous studies revealed multiple roles for protein phosphorylation and pathway structures in cellular functions from different perspectives. We seek to understand the roles of kinases and phosphatases from a protein homeostasis point of view. Using a streamlined tandem mass tag (SL-TMT) strategy, we systematically measure proteomic and phosphoproteomic responses to perturbations of phosphorylation signaling networks in yeast deletion strains. Our results emphasize the requirement for protein normalization for more complete interpretation of phosphorylation data. Functional relationships between kinases and phosphatases were characterized at both proteome and phosphoproteome levels in three ways: (1) Gene Ontology enrichment analysis, (2) Δgene-Δgene correlation networks, and (3) molecule covariance networks. This resource illuminates kinase and phosphatase functions and pathway organizations.


Assuntos
Fosfoproteínas/metabolismo , Proteômica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Deleção de Genes , Fosfoproteínas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Nat Genet ; 49(5): 806-810, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28369035

RESUMO

The evolutionary cost of gene loss is a central question in genetics and has been investigated in model organisms and human cell lines. In humans, tolerance of the loss of one or both functional copies of a gene is related to the gene's causal role in disease. However, estimates of the selection and dominance coefficients in humans have been elusive. Here we analyze exome sequence data from 60,706 individuals to make genome-wide estimates of selection against heterozygous loss of gene function. Using this distribution of selection coefficients for heterozygous protein-truncating variants (PTVs), we provide corresponding Bayesian estimates for individual genes. We find that genes under the strongest selection are enriched in embryonic lethal mouse knockouts, Mendelian disease-associated genes, and regulators of transcription. Screening by essentiality, we find a large set of genes under strong selection that are likely to have crucial functions but have not yet been thoroughly characterized.


Assuntos
Exoma/genética , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Seleção Genética , Algoritmos , Animais , Teorema de Bayes , Frequência do Gene , Predisposição Genética para Doença/genética , Genótipo , Heterozigoto , Humanos , Camundongos Knockout , Modelos Genéticos , Mutação , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/estatística & dados numéricos
12.
Nat Biotechnol ; 33(7): 743-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26076430

RESUMO

Fewer than half of all tandem mass spectrometry (MS/MS) spectra acquired in shotgun proteomics experiments are typically matched to a peptide with high confidence. Here we determine the identity of unassigned peptides using an ultra-tolerant Sequest database search that allows peptide matching even with modifications of unknown masses up to ± 500 Da. In a proteome-wide data set on HEK293 cells (9,513 proteins and 396,736 peptides), this approach matched an additional 184,000 modified peptides, which were linked to biological and chemical modifications representing 523 distinct mass bins, including phosphorylation, glycosylation and methylation. We localized all unknown modification masses to specific regions within a peptide. Known modifications were assigned to the correct amino acids with frequencies >90%. We conclude that at least one-third of unassigned spectra arise from peptides with substoichiometric modifications.


Assuntos
Bases de Dados de Proteínas , Mapeamento de Peptídeos/métodos , Peptídeos/análise , Proteômica/métodos , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Células HEK293 , Humanos , Dados de Sequência Molecular , Peptídeos/química , Proteínas/análise , Proteínas/química
15.
Development ; 135(18): 3031-41, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18701548

RESUMO

Central to embryonic development is the generation of molecular asymmetries across fields of undifferentiated cells. The Drosophila wing imaginal disc provides a powerful system with which to understand how such asymmetries are generated and how they contribute to formation of a complex structure. Early in development, the wing primordium is subdivided into a thin layer of peripodial epithelium (PE) and an apposing thickened layer of pseudostratified columnar epithelium (CE), known as the disc proper (DP). The DP gives rise to the wing blade, hinge and dorsal mesothorax, whereas the PE makes only a minor contribution to the ventral hinge and pleura. The mechanisms that generate this major asymmetry and its contribution to wing development are poorly understood. The Lines protein destabilizes the nuclear protein Bowl in ectodermal structures. Here, we show that Bowl accumulates in the PE from early stages of wing development and is absent from the DP. Broad inhibition of Bowl in the PE resulted in the replacement of the PE with a mirror image duplication of the DP. The failure to generate the PE severely compromised wing growth and the formation of the notum. Conversely, the activation of bowl in the DP (by removal or inhibition of lines function) resulted in the transformation of the DP into PE. Thus, we provide evidence that bowl and lines act as a binary switch to subdivide the wing primordium into PE and DP, and assign crucial roles for this asymmetry in wing growth and patterning.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Epitélio/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Asas de Animais/crescimento & desenvolvimento , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero , Epitélio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Asas de Animais/embriologia , Asas de Animais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA