RESUMO
The high-precision X-ray diffraction setup for work with diamond anvil cells (DACs) in interaction chamber 2 (IC2) of the High Energy Density instrument of the European X-ray Free-Electron Laser is described. This includes beamline optics, sample positioning and detector systems located in the multipurpose vacuum chamber. Concepts for pump-probe X-ray diffraction experiments in the DAC are described and their implementation demonstrated during the First User Community Assisted Commissioning experiment. X-ray heating and diffraction of Bi under pressure, obtained using 20â fs X-ray pulses at 17.8â keV and 2.2â MHz repetition, is illustrated through splitting of diffraction peaks, and interpreted employing finite element modeling of the sample chamber in the DAC.
RESUMO
The ability to visualize a sample undergoing a pressure-induced phase transition allows for the determination of kinetic parameters, such as the nucleation and growth rates of the high-pressure phase. For samples that are opaque to visible light (such as metallic systems), it is necessary to rely on x-ray imaging methods for sample visualization. Here, we present an experimental platform developed at beamline P02.2 at the PETRA III synchrotron radiation source, which is capable of performing simultaneous x-ray imaging and diffraction of samples that are dynamically compressed in piezo-driven diamond anvil cells. This setup utilizes a partially coherent monochromatic x-ray beam to perform lensless phase contrast imaging, which can be carried out using either a parallel- or focused-beam configuration. The capabilities of this platform are illustrated by experiments on dynamically compressed Ga and Ar. Melting and solidification were identified based on the observation of solid/liquid phase boundaries in the x-ray images and corresponding changes in the x-ray diffraction patterns collected during the transition, with significant edge enhancement observed in the x-ray images collected using the focused-beam. These results highlight the suitability of this technique for a variety of purposes, including melt curve determination.
RESUMO
New techniques are advancing the frontier of high-pressure physics beyond 1 terapascal, leading to new discoveries and offering stringent tests for condensed-matter theory and advanced numerical methods. However, the ability to absolutely determine the pressure state remains challenging, and well-calibrated pressure-density reference materials are required. We conducted shockless dynamic compression experiments at the National Ignition Facility and the Z machine to obtain quasi-absolute, high-precision, pressure-density equation-of-state data for gold and platinum. We derived two experimentally constrained pressure standards to terapascal conditions. Establishing accurate experimental determinations of extreme pressure will facilitate better connections between experiments and theory, paving the way toward improving our understanding of material response to these extreme conditions.
RESUMO
Fast compression experiments performed using dynamic diamond anvil cells (dDACs) employing piezoactuators offer the opportunity to study compression-rate dependent phenomena. In this paper, we describe an experimental setup which allows us to perform time-resolved x-ray diffraction during the fast compression of materials using improved dDACs. The combination of the high flux available using a 25.6 keV x-ray beam focused with a linear array of compound refractive lenses and the two fast GaAs LAMBDA detectors available at the Extreme Conditions Beamline (P02.2) at PETRA III enables the collection of x-ray diffraction patterns at an effective repetition rate of up to 4 kHz. Compression rates of up to 160 TPa/s have been achieved during the compression of gold in a 2.5 ms fast compression using improved dDAC configurations with more powerful piezoactuators. The application of this setup to low-Z compounds at lower compression rates is described, and the high temporal resolution of the setup is demonstrated. The possibility of applying finely tuned pressure profiles opens opportunities for future research, such as using oscillations of the piezoactuator to mimic propagation of seismic waves in the Earth.
RESUMO
Static compression experiments over 4 Mbar are rare, yet critical for developing accurate fundamental physics and chemistry models, relevant to a range of topics including modeling planetary interiors. Here we show that focused ion beam crafted toroidal single-crystal diamond anvils with ~9.0 µm culets are capable of producing pressures over 5 Mbar. The toroidal surface prevents gasket outflow and provides a means to stabilize the central culet. We have reached a maximum pressure of ~6.15 Mbar using Re as in situ pressure marker, a pressure regime typically accessed only by double-stage diamond anvils and dynamic compression platforms. Optimizing single-crystal diamond anvil design is key for extending the pressure range over which studies can be performed in the diamond anvil cell.