Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Trends Genet ; 39(8): 609-623, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37198063

RESUMO

Engineered gene drives create potential for both widespread benefits and irreversible harms to ecosystems. CRISPR-based systems of allelic conversion have rapidly accelerated gene drive research across diverse taxa, putting field trials and their necessary risk assessments on the horizon. Dynamic process-based models provide flexible quantitative platforms to predict gene drive outcomes in the context of system-specific ecological and evolutionary features. Here, we synthesize gene drive dynamic modeling studies to highlight research trends, knowledge gaps, and emergent principles, organized around their genetic, demographic, spatial, environmental, and implementation features. We identify the phenomena that most significantly influence model predictions, discuss limitations of biological complexity and uncertainty, and provide insights to promote responsible development and model-assisted risk assessment of gene drives.


Assuntos
Tecnologia de Impulso Genético , Ecossistema , Evolução Biológica , Medição de Risco
2.
Malar J ; 20(1): 284, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174879

RESUMO

BACKGROUND: Plasmodium falciparum (Pf) sporozoites (PfSPZ) can be administered as a highly protective vaccine conferring the highest protection seen to date. Sanaria® PfSPZ vaccines are produced using aseptically reared Anopheles stephensi mosquitoes. The bionomics of sporogonic development of P. falciparum in A. stephensi to fully mature salivary gland PfSPZ is thought to be modulated by several components of the mosquito innate immune system. In order to increase salivary gland PfSPZ infections in A. stephensi and thereby increase vaccine production efficiency, a gene knock down approach was used to investigate the activity of the immune deficiency (IMD) signaling pathway downstream effector leucine-rich repeat immune molecule 1 (LRIM1), an antagonist to Plasmodium development. METHODS: Expression of LRIM1 in A. stephensi was reduced following injection of double stranded (ds) RNA into mosquitoes. By combining the Gal4/UAS bipartite system with in vivo expression of short hairpin (sh) RNA coding for LRIM1 reduced expression of LRIM1 was targeted in the midgut, fat body, and salivary glands. RT-qPCR was used to demonstrate fold-changes in gene expression in three transgenic crosses and the effects on P. falciparum infections determined in mosquitoes showing the greatest reduction in LRIM1 expression. RESULTS: LRIM1 expression could be reduced, but not completely silenced, by expression of LRIM1 dsRNA. Infections of P. falciparum oocysts and PfSPZ were consistently and significantly higher in transgenic mosquitoes than wild type controls, with increases in PfSPZ ranging from 2.5- to tenfold. CONCLUSIONS: Plasmodium falciparum infections in A. stephensi can be increased following reduced expression of LRIM1. These data provide the springboard for more precise knockout of LRIM1 for the eventual incorporation of immune-compromised A. stephensi into manufacturing of Sanaria's PfSPZ products.


Assuntos
Anopheles/parasitologia , Proteínas de Insetos/genética , Plasmodium falciparum/fisiologia , Interferência de RNA , Animais , Anopheles/genética , Feminino , Técnicas de Silenciamento de Genes , Proteínas de Insetos/metabolismo , Glândulas Salivares/parasitologia , Esporozoítos/fisiologia
3.
Malar J ; 18(1): 2, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602380

RESUMO

BACKGROUND: Saglin, a 100 kDa protein composed of two 50 kDa homodimers, is present in the salivary glands of Anopheles gambiae and has been considered an essential receptor for sporozoites (SPZ) of Plasmodium berghei and Plasmodium falciparum (Pf), allowing SPZ to recognize, bind to, and infect mosquito salivary glands. Spatial and temporal patterns of Saglin expression reported here, however, suggest that this model does not fully describe the Saglin-SPZ interaction. RESULTS: Saglin protein was detected by indirect immunofluorescence microscopy only in the medial and proximal-lateral lobes, but not in the distal-lateral lobes, of the salivary glands of An. gambiae; the pattern of expression was independent of mosquito age or physiological state. These results were confirmed by steady-state Saglin transcript and protein expression using qRT-PCR and Western-blot analysis, respectively. Saglin was localized to the basal surface of the cells of the medial lobes and was undetectable elsewhere (intracellularly, on the lateral or apical membranes, the cells' secretory vacuoles, or in the salivary duct). In the cells of the proximal lateral lobes of the salivary glands, Saglin was distinctly intracellular and was not localized to any of the cell surfaces. Transgenic Anopheles stephensi were produced that expressed An. gambiae Saglin in the distal lateral lobes of the salivary gland. Additional Saglin expression did not enhance infection by PfSPZ compared to non-transgenic siblings fed on the same gametocyte-containing blood meal. CONCLUSIONS: The absence of Saglin in the distal lateral lobes of the salivary glands, a primary destination for SPZ, suggests Saglin is not an essential receptor for Plasmodium SPZ. The lack of any correlation between increased Saglin expression in the distal lateral lobes of the salivary glands of transgenic An. stephensi and PfSPZ infection is also consistent with Saglin not being an essential salivary gland receptor for Plasmodium SPZ.


Assuntos
Anopheles/parasitologia , Proteínas de Insetos/metabolismo , Plasmodium falciparum/fisiologia , Glândulas Salivares/metabolismo , Animais , Feminino , Proteínas de Insetos/genética , Glândulas Salivares/parasitologia , Esporozoítos/fisiologia
4.
Proc Biol Sci ; 282(1810)2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26108630

RESUMO

Genetic technologies based on transposon-mediated transgenesis along with several recently developed genome-editing technologies have become the preferred methods of choice for genetically manipulating many organisms. The silkworm, Bombyx mori, is a Lepidopteran insect of great economic importance because of its use in silk production and because it is a valuable model insect that has greatly enhanced our understanding of the biology of insects, including many agricultural pests. In the past 10 years, great advances have been achieved in the development of genetic technologies in B. mori, including transposon-based technologies that rely on piggyBac-mediated transgenesis and genome-editing technologies that rely on protein- or RNA-guided modification of chromosomes. The successful development and application of these technologies has not only facilitated a better understanding of B. mori and its use as a silk production system, but also provided valuable experiences that have contributed to the development of similar technologies in non-model insects. This review summarizes the technologies currently available for use in B. mori, their application to the study of gene function and their use in genetically modifying B. mori for biotechnology applications. The challenges, solutions and future prospects associated with the development and application of genetic technologies in B. mori are also discussed.


Assuntos
Animais Geneticamente Modificados/genética , Biotecnologia/métodos , Bombyx/genética , Técnicas Genéticas/instrumentação , Animais , Animais Geneticamente Modificados/metabolismo , Biotecnologia/instrumentação , Bombyx/metabolismo , Seda/metabolismo
5.
Proc Natl Acad Sci U S A ; 108(39): 16339-44, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21930941

RESUMO

Technical advances in mosquito biology are enabling the development of new approaches to vector control. Absent are powerful forward-genetics technologies, such as enhancer and gene traps, that permit determination of gene functions from the phenotypes arising from transposon insertion mutations. We show that the piggyBac transposon is highly active in the germline of the human malaria vector Anopheles stephensi. Up to 6% of the progeny from transgenic A. stephensi containing a single 6-kb piggyBac element with a marker gene expressing EGFP had the vector in new genomic locations when piggyBac transposase was provided in trans from a second integrated transgene. The active transposition of piggyBac resulted in the efficient detection of enhancers, with ~10% of the progeny with piggyBac in new locations with novel patterns of EGFP expression in third and fourth instar larvae and in adults. The availability of advanced transgenic capabilities such as efficient transposon-based forward-genetics technologies for Anopheles mosquitoes not only will accelerate our understanding of mosquito functional genomics and the development of novel vector and disease transmission control strategies, but also will enable studies by evolutionary developmental biologists, virologists, and parasitologists.


Assuntos
Anopheles/genética , Elementos de DNA Transponíveis , Elementos Facilitadores Genéticos , Animais , Animais Geneticamente Modificados , Insetos Vetores , Malária/transmissão
6.
Pathog Glob Health ; 117(3): 308-314, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35993325

RESUMO

Plasmodium sporozoites associated with the midgut and in the hemolymph of mosquitoes differ from sporozoites in the secretory cavities and ducts of the insects' salivary glands in their transcriptome, proteome, motility, and infectivity. Using an ex vivo Anopheles stephensi salivary gland culture system incorporating simple microfluidics and transgenic Plasmodium berghei with the fluorescent protein gene mCherry under the transcriptional control of the Pbuis4 promoter whose expression served as a proxy for parasite maturation, we observed rapid parasite maturation in the absence of salivary gland invasion. While in vivo Pbuis4::mCherry expression was only detectable in sporozoites within the salivary glands (mature parasites) as expected, the simple exposure of P. berghei sporozoites to dissected salivary glands led to rapid parasite maturation as indicated by mCherry expression. These results suggest that previous efforts to develop ex vivo and in vitro systems for investigating sporozoite interactions with mosquito salivary glands have likely been unsuccessful in part because the maturation of sporozoites leads to a loss in the ability to invade salivary glands.


Assuntos
Anopheles , Animais , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Esporozoítos , Regulação da Expressão Gênica , Glândulas Salivares
7.
Genetica ; 139(8): 985-97, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21805320

RESUMO

We have conducted a structure and functional analysis of the hobo transposable element of Drosophila melanogaster. A minimum of 141 bp of the left (L) end and 65 bp of the right (R) end of the hobo were shown to contain sequences sufficient for transposition. Both ends of hobo contain multiple copies of the motifs GGGTG and GTGGC and we show that the frequency of hobo transposition increases as a function of the copy number of these motifs. The R end of hobo contains a unique 12 bp internal inverted repeat that is identical to the hobo terminal inverted repeats. We show that this internal inverted repeat suppresses transposition activity in a hobo element containing an intact L end and only 475 bp of the R end. In addition to establishing cis-sequences requirements for transposition, we analyzed trans-sequence effects of the hobo transposase. We show a hobo transposase lacking the first 49 amino acids catalyzed hobo transposition at a higher frequency than the full-length transposase suggesting that, similar to the related Ac transposase, residues at the amino end of the transposase reduce transposition. Finally, we compared target site sequences of hobo with those of the related Hermes element and found both transposons have strong preferences for the same insertion sites.


Assuntos
Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Transposases/metabolismo , Animais , Sequência de Bases , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Embrião não Mamífero/metabolismo , Sequências Repetidas Invertidas/genética , Plasmídeos/genética , Deleção de Sequência , Transposases/química , Transposases/genética
8.
Appl Biosaf ; 25(1): 19-27, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32655328

RESUMO

BACKGROUND: Genetic technologies such as gene editing and gene drive create challenges for existing frameworks used to assess risk and make regulatory determinations by governments and institutions. Insect genetic technologies including transgenics, gene editing, and gene drive may be particularly challenging because of the large and increasing number of insect species being genetically modified and the degree of familiarity with these organisms and technologies by biosafety officials charged with making containment decisions. METHODS: An anonymous online survey of biosafety professionals was distributed to the membership of ABSA International, a global society of biosafety professionals, to investigate their perspectives on their preparedness to meet these new challenges. RESULTS: Existing guidance used to make containment decisions for nongenetically modified insects was widely seen as adequate, and most respondents thought the available guidance for making containment decisions for genetically modified insects with and without gene drives was inadequate. Most respondents reported having less confidence in their decisions concerning containment of genetically modified insects compared to decisions involving genetically modified microbes, (noninsect) animals, and plants. CONCLUSIONS: These results reveal a need for additional support for biosafety professionals to improve the quality of and confidence in containment decisions regarding genetically modified insects with and without gene drive. These needs might be addressed by increasing training, updating existing guidance, creating new guidance, and creating a third-party accreditation entity to support institutions. Sixty percent of the respondents said they either would or might use a voluntary third-party accreditation service to support insect containment decisions.

9.
BMC Mol Biol ; 10: 108, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-20003420

RESUMO

BACKGROUND: hAT elements and V(D)J recombination may have evolved from a common ancestral transposable element system. Extrachromosomal, circular forms of transposable elements (referred to here as episomal forms) have been reported yet their biological significance remains unknown. V(D)J signal joints, which resemble episomal transposable elements, have been considered non-recombinogenic products of V(D)J recombination and a safe way to dispose of excised chromosomal sequences. V(D)J signal joints can, however, participate in recombination reactions and the purpose of this study was to determine if hobo and Hermes episomal elements are also recombinogenic. RESULTS: Up to 50% of hobo/Hermes episomes contained two intact, inverted-terminal repeats and 86% of these contained from 1-1000 bp of intercalary DNA. Episomal hobo/Hermes elements were recovered from Musca domestica (a natural host of Hermes), Drosophila melanogaster (a natural host of hobo) and transgenic Drosophila melanogaster and Aedes aegypti (with autonomous Hermes elements). Episomal Hermes elements were recovered from unfertilized eggs of M. domestica and D. melanogaster demonstrating their potential for extrachromosomal, maternal transmission. Reintegration of episomal Hermes elements was observed in vitro and in vivo and the presence of Hermes episomes resulted in lower rates of canonical Hermes transposition in vivo. CONCLUSION: Episomal hobo/Hermes elements are common products of element excision and can be maternally transmitted. Episomal forms of Hermes are capable of integration and also of influencing the transposition of canonical elements suggesting biological roles for these extrachromosomal elements in element transmission and regulation.


Assuntos
Aedes/genética , Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Plasmídeos , Animais , Sequência de Bases
10.
J Hered ; 100(4): 473-80, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19366812

RESUMO

Hermes are hAT transposons from Musca domestica that are very closely related to the hobo transposons from Drosophila melanogaster and are useful as gene vectors in a wide variety of organisms including insects, planaria, and yeast. hobo elements show distinct length variations in a rapidly evolving region of the transposase-coding region as a result of expansions and contractions of a simple repeat sequence encoding 3 amino acids threonine, proline, and glutamic acid (TPE). These variations in length may influence the function of the protein and the movement of hobo transposons in natural populations. Here, we determine the distribution of Hermes in populations of M. domestica as well as whether Hermes transposase has undergone similar sequence expansions and contractions during its evolution in this species. Hermes transposons were found in all M. domestica individuals sampled from 14 populations collected from 4 continents. All individuals with Hermes transposons had evidence for the presence of intact transposase open reading frames, and little sequence variation was observed among Hermes elements. A systematic analysis of the TPE-homologous region of the Hermes transposase-coding region revealed no evidence for length variation. The simple sequence repeat found in hobo elements is a feature of this transposon that evolved since the divergence of hobo and Hermes.


Assuntos
Elementos de DNA Transponíveis , Moscas Domésticas/genética , Sequência de Aminoácidos , Animais , DNA/química , Genes de Insetos , Dados de Sequência Molecular , Transposases/genética
11.
Gene ; 423(1): 63-71, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18634859

RESUMO

IS630/Tc1/mariner elements are diverse and widespread within insects. The African malaria mosquito, Anopheles gambiae, contains over 30 families of IS630/Tc1/mariner elements although few have been studied in any detail. To examine the history of Topi elements in An. gambiae populations, Topi elements (n=73) were sampled from five distinct populations of An. gambiae from eastern and western Africa and evaluated with respect to copy number, nucleotide diversity and insertion site-occupancy frequency. Topi 1 and 2 elements were abundant (10-34 per diploid genome) and highly diverse (pi=0.051). Elements from mosquitoes collected in Nigeria were Topi 2 elements and those from mosquitoes collected in Mozambique were Topi 1 elements. Of the 49 Topi transposase open reading frames sequenced none were found to be identical. Intact elements with complete transposase open reading frames were common, although based on insertion site-occupancy frequency data it appeared that genetic drift was the major force acting on these IS630/Tc1/mariner-type elements. Topi 3 elements were not recovered from any of the populations sampled in this study and appear to be rare elements in An. gambiae, possibly due to a recent introduction.


Assuntos
Anopheles/genética , Elementos de DNA Transponíveis/genética , África , Animais , Sequência de Bases , Dosagem de Genes , Genes de Insetos , Deriva Genética , Fases de Leitura Aberta , Filogenia , Seleção Genética
12.
Genetics ; 176(4): 2477-87, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17603116

RESUMO

Transposable elements are being considered as genetic drive agents for introducing phenotype-altering genes into populations of vectors of human disease. The dynamics of endogenous elements will assist in predicting the behavior of introduced elements. Transposable element display was used to estimate the site-occupancy frequency distribution of Herves in six populations of Anopheles gambiae s.s. The site-occupancy distribution data suggest that the element has been recently active within the sampled populations. All 218 individuals sampled contained at least one copy of Herves with a mean of 3.6 elements per diploid genome. No significant differences in copy number were observed among populations. Nucleotide polymorphism within the element was high (pi = 0.0079 in noncoding sequences and 0.0046 in coding sequences) relative to that observed in some of the more well-studied elements in Drosophila melanogaster. In total, 33 distinct forms of Herves were found on the basis of the sequence of the first 528 bp of the transposase open reading frame. Only two forms were found in all six study populations. Although Herves elements in An. gambiae are quite diverse, 85% of the individuals examined had evidence of complete forms of the element. Evidence was found for the lateral transfer of Herves from an unknown source into the An. gambiae lineage prior to the diversification of the An. gambiae species complex. The characteristics of Herves in An. gambiae are somewhat unlike those of P elements in D. melanogaster.


Assuntos
Anopheles/genética , Elementos de DNA Transponíveis , África , Animais , Anopheles/patogenicidade , Sequência de Bases , Primers do DNA/genética , Drosophila melanogaster/genética , Genética Populacional , Humanos , Insetos Vetores/genética , Malária/transmissão , Dados de Sequência Molecular , Fases de Leitura Aberta , Polimorfismo Genético , Seleção Genética , Especificidade da Espécie
13.
Adv Exp Med Biol ; 627: 1-18, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18510010

RESUMO

Genetic transformation is a critical component to the fundamental genetic analysis of insect species and holds great promise for establishing strains that improve population control and behavior for practical application. This is especially so for insects that are disease vectors, many of which are currently subject to genomic sequence analysis, and intensive population control measures that must be improved for better efficacy and cost-effectiveness. Transposon-mediated germ-line transformation has been the ultimate goal for most fundamental and practical studies, and impressive strides have been made in recent development of transgene vector and marker systems for several mosquito species. This has resulted in rapid advances in functional genomic sequence analysis and new strategies for biological control based on conditional lethality. Importantly, advances have also been made in our ability to use these systems more effectively in terms of enhanced stability and targeting to specific genomic loci. Nevertheless, not all insects are currently amenable to germ-line transformation techniques, and thus advances in transient somatic expression and paratransgenesis have also been critical, if not preferable for some applications. Of particular importance is how this technology will be used for practical application. Early ideas for population replacement of indigenous pests with innocuous transgenic siblings by transposon-vector spread, may require reevaluation in terms of our current knowledge of the behavior of transposons currently available for transformation. The effective implementation of any control program using released transgenics, will also benefit from broadening the perspective of these control measures as being more mainstream than exotic.


Assuntos
Insetos/genética , Transgenes , Animais , Elementos de DNA Transponíveis , Transmissão de Doença Infecciosa , Genes Letais , Insetos Vetores , Transformação Genética
15.
G3 (Bethesda) ; 8(10): 3119-3130, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30135106

RESUMO

The piggyBac transposon was modified to generate gene trap constructs, which were then incorporated into the genome of the Asian malaria vector, Anopheles stephensi and remobilized through genetic crosses using a piggyBac transposase expressing line. A total of 620 remobilization events were documented, and 73 were further characterized at the DNA level to identify patterns in insertion site preferences, remobilization frequencies, and remobilization patterns. Overall, the use of the tetameric AmCyan reporter as the fusion peptide displayed a preference for insertion into the 5'-end of transcripts. Notably 183 - 44882 bp upstream of the An. stephensi v1.0 ab initio gene models, which demonstrated that the promoter regions for the genes of An. stephensi are further upstream of the 5'-proximal regions of the genes in the ab inito models than may be otherwise predicted. RNA-Seq transcript coverage supported the insertion of the splice acceptor gene trap element into 5'-UTR introns for nearly half of all insertions identified. The use of a gene trap element that prefers insertion into the 5'-end of genes supports the use of this technology for the random generation of knock-out mutants, as well as the experimental confirmation of 5'-UTR introns in An. stephensi.


Assuntos
Anopheles/genética , Elementos de DNA Transponíveis , Genoma de Inseto , Mosquitos Vetores , Animais , Animais Geneticamente Modificados , Genômica , Transposases
16.
Insect Biochem Mol Biol ; 37(9): 941-51, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17681233

RESUMO

The post-integration activity of piggyBac transposable element gene vectors in Aedes aegypti mosquitoes was tested under a variety of conditions. The embryos from five independent transgenic lines of Ae. aegypti, each with a single integrated non-autonomous piggyBac transposable element gene vector, were injected with plasmids containing the piggyBac transposase open-reading frame under the regulatory control of the Drosophila melanogaster hsp70 promoter. No evidence for somatic remobilization was detected in the subsequent adults whereas somatic remobilization was readily detected when similar lines of transgenic D. melanogaster were injected with the same piggyBac transposase-expressing plasmid. Ae. aegypti heterozygotes of piggyBac reporter-containing transgenes and piggyBac transposase-expressing transgenes showed no evidence of somatic and germ-line remobilization based on phenotypic and molecular detection methods. The post-integration mobility properties of piggyBac in Ae. aegypti enhance the utility of this gene vector for certain applications, particularly those where any level of vector remobilization is unacceptable.


Assuntos
Aedes/fisiologia , Elementos de DNA Transponíveis/genética , Animais , Animais Geneticamente Modificados , Cor de Olho/genética , Genes Reporter , Vetores Genéticos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Sci Rep ; 7: 43883, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266580

RESUMO

Site-specific genome modification (SSM) is an important tool for mosquito functional genomics and comparative gene expression studies, which contribute to a better understanding of mosquito biology and are thus a key to finding new strategies to eliminate vector-borne diseases. Moreover, it allows for the creation of advanced transgenic strains for vector control programs. SSM circumvents the drawbacks of transposon-mediated transgenesis, where random transgene integration into the host genome results in insertional mutagenesis and variable position effects. We applied the Cre/lox recombinase-mediated cassette exchange (RMCE) system to Aedes aegypti, the vector of dengue, chikungunya, and Zika viruses. In this context we created four target site lines for RMCE and evaluated their fitness costs. Cre-RMCE is functional in a two-step mechanism and with good efficiency in Ae. aegypti. The advantages of Cre-RMCE over existing site-specific modification systems for Ae. aegypti, phiC31-RMCE and CRISPR, originate in the preservation of the recombination sites, which 1) allows successive modifications and rapid expansion or adaptation of existing systems by repeated targeting of the same site; and 2) provides reversibility, thus allowing the excision of undesired sequences. Thereby, Cre-RMCE complements existing genomic modification tools, adding flexibility and versatility to vector genome targeting.


Assuntos
Aedes/genética , Edição de Genes/métodos , Marcação de Genes/métodos , Genoma de Inseto/genética , Integrases/genética , Mosquitos Vetores/genética , Aedes/fisiologia , Aedes/virologia , Animais , Animais Geneticamente Modificados , Sítios de Ligação/genética , Feminino , Fertilidade/genética , Integrases/metabolismo , Longevidade/genética , Masculino , Mosquitos Vetores/fisiologia , Mosquitos Vetores/virologia , Recombinação Genética
18.
Genetics ; 169(2): 697-708, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15545643

RESUMO

Transposable elements have proven to be invaluable tools for genetically manipulating a wide variety of plants, animals, and microbes. Some have suggested that they could be used to spread desirable genes, such as refractoriness to Plasmodium infection, through target populations of Anopheles gambiae, thereby disabling the mosquito's ability to transmit malaria. To achieve this, a transposon must remain mobile and intact after the initial introduction into the genome. Endogenous, active class II transposable elements from An. gambiae have not been exploited as gene vectors/drivers because none have been isolated. We report the discovery of an active class II transposable element, Herves, from the mosquito An. gambiae. Herves is a member of a distinct subfamily of hAT elements that includes the hopper-we element from Bactrocera dorsalis and B. cucurbitae. Herves was transpositionally active in mobility assays performed in Drosophila melanogaster S2 cells and developing embryos and was used as a germ-line transformation vector in D. melanogaster. Herves displays an altered target-site preference from the distantly related hAT elements, Hermes and hobo. Herves is also present in An. arabiensis and An. merus with copy numbers similar to that found in An. gambiae. Preliminary data from an East African population are consistent with the element being transpositionally active in mosquitoes.


Assuntos
Anopheles/genética , Elementos de DNA Transponíveis , Malária/transmissão , África , Sequência de Aminoácidos , Animais , Sequência de Bases , Drosophila/genética , Mutação da Fase de Leitura , Dosagem de Genes , Genes de Insetos , Genoma , Dados de Sequência Molecular , Mutagênese Insercional , Fases de Leitura Aberta , Filogenia , Biossíntese de Proteínas/genética , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
19.
Curr Opin Insect Sci ; 13: 43-54, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-27436552

RESUMO

Insect genome editing was first reported 1991 in Drosophila melanogaster but the technology used was not portable to other species. Not until the recent development of facile, engineered DNA endonuclease systems has gene editing become widely available to insect scientists. Most applications in insects to date have been technical in nature but this is rapidly changing. Functional genomics and genetics-based insect control efforts will be major beneficiaries of the application of contemporary gene editing technologies. Engineered endonucleases like Cas9 make it possible to create powerful and effective gene drive systems that could be used to reduce or even eradicate specific insect populations. 'Best practices' for using Cas9-based editing are beginning to emerge making it easier and more effective to design and use but gene editing technologies still require traditional means of delivery in order to introduce them into somatic and germ cells of insects-microinjection of developing embryos. This constrains the use of these technologies by insect scientists. Insects created using editing technologies challenge existing governmental regulatory structures designed to manage genetically modified organisms.


Assuntos
Edição de Genes , Genoma de Inseto/genética , Insetos/genética , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Endonucleases/metabolismo
20.
Nat Commun ; 7: 13010, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27694947

RESUMO

Mosquitoes are vectors for multiple infectious human diseases and use a variety of sensory cues (olfactory, temperature, humidity and visual) to locate a human host. A comprehensive understanding of the circuitry underlying sensory signalling in the mosquito brain is lacking. Here we used the Q-system of binary gene expression to develop transgenic lines of Anopheles gambiae in which olfactory receptor neurons expressing the odorant receptor co-receptor (Orco) gene are labelled with GFP. These neurons project from the antennae and maxillary palps to the antennal lobe (AL) and from the labella on the proboscis to the suboesophageal zone (SEZ), suggesting integration of olfactory and gustatory signals occurs in this brain region. We present detailed anatomical maps of olfactory innervations in the AL and the SEZ, identifying glomeruli that may respond to human body odours or carbon dioxide. Our results pave the way for anatomical and functional neurogenetic studies of sensory processing in mosquitoes.


Assuntos
Anopheles/genética , Anopheles/metabolismo , Encéfalo/metabolismo , Olfato , Animais , Animais Geneticamente Modificados , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Malária/transmissão , Masculino , Mosquitos Vetores , Neurônios/metabolismo , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Olfato/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA