RESUMO
PURPOSE/OBJECTIVE: Field size limitations on Halcyon and Ethos treatment machines largely preclude use of the conventional monoisocentric three-field technique for breast/chest wall and regional lymph nodes. We present an alternative, IMRT-based planning approach that facilitates treatment on Halcyon and Ethos while preserving plan quality. MATERIALS/METHODS: Eight breast and regional node cases (four left-sided, four right-sided) were planned for an Ethos machine using a 15-17 field IMRT technique. Institutional plan quality metrics for CTV and PTV coverage and OAR sparing were assessed. Five plans (four right-sided, one left-sided) were also planned using a hybrid 3D multisocenter technique. CTV coverage and OAR sparing were compared to the IMRT plans. Eclipse scripting tools were developed to aid in beam placement and plan evaluation through a set of dosimetric scorecards, and both are shared publicly. RESULTS: On average, the IMRT plans achieved breast CTV and PTV coverage at 50 Gy of 97.9% and 95.7%, respectively. Supraclavicular CTV and PTV coverages at 45 Gy were 100% and 95.5%. Axillary lymph node CTV and PTV coverages at 45 Gy were 100% and 97.1%, and IMN CTV coverage at 45 Gy was 99.2%. Mean ipsilateral lung V20 Gy was 19.3%, and average mean heart dose was 1.6 Gy for right-sided cases and 3.0 Gy for left-sided. In comparison to the hybrid 3D plans, IMRT plans achieved higher breast and supraclavicular CTV coverage (99.9% vs. 98.6% and 99.9% vs. 93.4%), higher IMN coverage (99.6% vs. 78.2%), and lower ipsilateral lung V20 Gy (19.6% vs. 28.2%). CONCLUSION: Institutional plan quality benchmarks were achieved for all eight cases using the IMRT-based planning approach. The IMRT-based planning approach offered superior conformity and OAR sparing than a competing hybrid 3D approach.
Assuntos
Neoplasias da Mama , Linfonodos , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Parede Torácica , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Feminino , Parede Torácica/efeitos da radiação , Órgãos em Risco/efeitos da radiação , Neoplasias da Mama/radioterapia , Linfonodos/efeitos da radiaçãoRESUMO
PURPOSE: Magnetic resonance image (MRI) guided radiotherapy enables gating directly on the target position. We present an evaluation of an MRI-guided radiotherapy system's gating performance using an MRI-compatible respiratory motion phantom and radiochromic film. Our evaluation is geared toward validation of our institution's clinical gating protocol which involves planning to a target volume formed by expanding 5 mm about the gross tumor volume (GTV) and gating based on a 3 mm window about the GTV. METHODS: The motion phantom consisted of a target rod containing high-contrast target inserts which moved in the superior-inferior direction inside a body structure containing background contrast material. The target rod was equipped with a radiochromic film insert. Treatment plans were generated for a 3 cm diameter spherical planning target volume, and delivered to the phantom at rest and in motion with and without gating. Both sinusoidal trajectories and tumor trajectories measured during MRI-guided treatments were used. Similarity of the gated dose distribution to the planned, motion-frozen, distribution was quantified using the gamma technique. RESULTS: Without gating, gamma pass rates using 4%/3 mm criteria were 22-59% depending on motion trajectory. Using our clinical standard of repeated breath holds and a gating window of 3 mm with 10% target allowed outside the gating boundary, the gamma pass rate was 97.8% with 3%/3 mm gamma criteria. Using a 3 mm window and 10% allowed excursion, all of the patient tumor motion trajectories at actual speed resulting in at least 95% gamma pass rate at 4%/3 mm. CONCLUSIONS: Our results suggest that the device can be used to compensate respiratory motion using a 3 mm gating margin and 10% allowed excursion results in conjunction with repeated breath holds. Full clinical validation requires a comprehensive evaluation of tracking performance in actual patient images, outside the scope of this study.
Assuntos
Imageamento por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem/instrumentação , Dosimetria Fotográfica , Humanos , Movimento , Imagens de Fantasmas , Radiometria , RespiraçãoRESUMO
The aim of this study was to analyze the patterns of prostate bed (PB) recurrence in prostate cancer patients experiencing prostate-specific antigen (PSA) persistence (BCP) or biochemical recurrence (BCR) after radical prostatectomy using 68Ga-PSMA-11 PET/CT (68Ga-PSMA PET) in relation to the Radiation Therapy Oncology Group (RTOG) clinical target volumes (CTVs). Methods: This single-center, retrospective analysis included patients with BCP or BCR after radical prostatectomy and PB recurrence on 68Ga-PSMA PET. The PB recurrences were delineated by nuclear medicine physicians, the CTVs by radiation oncologists contouring guidelines on the 68Ga-PSMA PET, respectively, masked from each other. The coverage of the 68Ga-PSMA PET recurrence was categorized as PSMA recurrence completely covered, partially covered, or not covered by the RTOG-based CTV. Further, we evaluated the differences in PSMA recurrence patterns among patients with different 68Ga-PSMA PET staging (miTNM). Mann-Whitney U tests, the chi-square test, and Spearman (ρ) correlation analysis were used to investigate associations between CTV coverage and 68Ga-PSMA PET-based tumor volume, serum PSA levels, miTNM, and rectal/bladder involvement. Results: A total of 226 patients were included in the analysis; 127 patients had PSMA recurrence limited to the PB (miTrN0M0), 30 had pelvic nodal disease (miTrN1M0), 32 had extrapelvic disease (miTrN0M1), and 37 had both pelvic nodal disease and extrapelvic disease (miTrN1M1). In the miTrN0M0 cohort, the recurrence involved the rectal and bladder walls in 12 of 127 (9%) and 4 of 127 (3%), respectively. The PSMA-positive PB recurrences were completely covered by the CTV in 68 of 127 patients (53%), partially covered in 43 of 127 (34%), and not covered in 16 of 127 (13%). Full coverage was associated with a smaller tumor volume (P = 0.043), a lack of rectal/bladder wall involvement (P = 0.03), and lower miTNM staging (P = 0.035) but not with lower serum PSA levels (P = 0.979). Conclusion: Our study suggests that 68Ga-PSMA PET can be a valuable tool for guiding salvage radiation therapy (SRT) planning directed to the PB in the setting of postoperative BCR or BCP. These data should be incorporated into the redefinition of PB contouring guidelines.
Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Antígeno Prostático Específico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Retrospectivos , Radioisótopos de Gálio , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/cirurgia , Prostatectomia , Terapia de Salvação , Recidiva Local de Neoplasia/patologiaRESUMO
Interest in integrating magnetic resonance imaging (MRI) in radiation therapy (RT) practice has increased dramatically in recent years owing to its unique advantages such as excellent soft tissue contrast and capability of measuring biological properties. Continuous real-time imaging for intrafractional motion tracking without ionizing radiation serves as a particularly attractive feature for applications in RT. Despite its many advantages, the integration of MRI in RT workflows is not straightforward, with many unmet needs. MR safety remains one of the key challenges and concerns in the clinical implementation of MR simulators and MR-guided radiation therapy systems in radiation oncology. Most RT staff are not accustomed to working in an environment with a strong magnetic field. There are specific requirements in RT that are different from diagnostic applications. A large variety of implants and devices used in routine RT practice do not have clear MR safety labels. RT-specific imaging pulse sequences focusing on fast acquisition, high spatial integrity, and continuous, real-time acquisition require additional MR safety testing and evaluation. This article provides an overview of MR safety tailored toward RT staff, followed by discussions on specific requirements and challenges associated with MR safety in the RT environment. Strategies and techniques for developing an MR safety program specific to RT are presented and discussed.
Assuntos
Imageamento por Ressonância Magnética , Humanos , Radioterapia (Especialidade)RESUMO
PURPOSE: To develop a technique that assesses the accuracy of the breathing phase-specific volume image generation process by patient-specific breathing motion model using the original free-breathing computed tomographic (CT) scans as ground truths. METHODS: Sixteen lung cancer patients underwent a previously published protocol in which 25 free-breathing fast helical CT scans were acquired with a simultaneous breathing surrogate. A patient-specific motion model was constructed based on the tissue displacements determined by a state-of-the-art deformable image registration. The first image was arbitrarily selected as the reference image. The motion model was used, along with the free-breathing phase information of the original 25 image datasets, to generate a set of deformation vector fields that mapped the reference image to the 24 nonreference images. The high-pitch helically acquired original scans served as ground truths because they captured the instantaneous tissue positions during free breathing. Image similarity between the simulated and the original scans was assessed using deformable registration that evaluated the pointwise discordance throughout the lungs. RESULTS: Qualitative comparisons using image overlays showed excellent agreement between the simulated images and the original images. Even large 2-cm diaphragm displacements were very well modeled, as was sliding motion across the lung-chest wall boundary. The mean error across the patient cohort was 1.15 ± 0.37 mm, and the mean 95th percentile error was 2.47 ± 0.78 mm. CONCLUSION: The proposed ground truth-based technique provided voxel-by-voxel accuracy analysis that could identify organ-specific or tumor-specific motion modeling errors for treatment planning. Despite a large variety of breathing patterns and lung deformations during the free-breathing scanning session, the 5-dimensionl CT technique was able to accurately reproduce the original helical CT scans, suggesting its applicability to a wide range of patients.
Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Movimento , Planejamento da Radioterapia Assistida por Computador/métodos , Respiração , Tomografia Computadorizada Espiral/métodos , Algoritmos , Artefatos , Protocolos Clínicos , Expiração , Tomografia Computadorizada Quadridimensional/normas , Humanos , Inalação , Garantia da Qualidade dos Cuidados de Saúde , Planejamento da Radioterapia Assistida por Computador/normas , Reprodutibilidade dos Testes , Tomografia Computadorizada Espiral/normasRESUMO
PURPOSE: To demonstrate that a "5DCT" technique which utilizes fast helical acquisition yields the same respiratory-gated images as a commercial technique for regular, mechanically produced breathing cycles. METHODS: Respiratory-gated images of an anesthetized, mechanically ventilated pig were generated using a Siemens low-pitch helical protocol and 5DCT for a range of breathing rates and amplitudes and with standard and low dose imaging protocols. 5DCT reconstructions were independently evaluated by measuring the distances between tissue positions predicted by a 5D motion model and those measured using deformable registration, as well by reconstructing the originally acquired scans. Discrepancies between the 5DCT and commercial reconstructions were measured using landmark correspondences. RESULTS: The mean distance between model predicted tissue positions and deformably registered tissue positions over the nine datasets was 0.65 ± 0.28 mm. Reconstructions of the original scans were on average accurate to 0.78 ± 0.57 mm. Mean landmark displacement between the commercial and 5DCT images was 1.76 ± 1.25 mm while the maximum lung tissue motion over the breathing cycle had a mean value of 27.2 ± 4.6 mm. An image composed of the average of 30 deformably registered images acquired with a low dose protocol had 6 HU image noise (single standard deviation) in the heart versus 31 HU for the commercial images. CONCLUSIONS: An end to end evaluation of the 5DCT technique was conducted through landmark based comparison to breathing gated images acquired with a commercial protocol under highly regular ventilation. The techniques were found to agree to within 2 mm for most respiratory phases and most points in the lung.