Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 107(28): 12722-7, 2010 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-20616028

RESUMO

The hypoxia-inducible factor (HIF) family of transcription factors directs a coordinated cellular response to hypoxia that includes the transcriptional regulation of a number of metabolic enzymes. Chuvash polycythemia (CP) is an autosomal recessive human disorder in which the regulatory degradation of HIF is impaired, resulting in elevated levels of HIF at normal oxygen tensions. Apart from the polycythemia, CP patients have marked abnormalities of cardiopulmonary function. No studies of integrated metabolic function have been reported. Here we describe the response of these patients to a series of metabolic stresses: exercise of a large muscle mass on a cycle ergometer, exercise of a small muscle mass (calf muscle) which allowed noninvasive in vivo assessments of muscle metabolism using (31)P magnetic resonance spectroscopy, and a standard meal tolerance test. During exercise, CP patients had early and marked phosphocreatine depletion and acidosis in skeletal muscle, greater accumulation of lactate in blood, and reduced maximum exercise capacities. Muscle biopsy specimens from CP patients showed elevated levels of transcript for pyruvate dehydrogenase kinase, phosphofructokinase, and muscle pyruvate kinase. In cell culture, a range of experimental manipulations have been used to study the effects of HIF on cellular metabolism. However, these approaches provide no potential to investigate integrated responses at the level of the whole organism. Although CP is relatively subtle disorder, our study now reveals a striking regulatory role for HIF on metabolism during exercise in humans. These findings have significant implications for the development of therapeutic approaches targeting the HIF pathway.


Assuntos
Regulação da Expressão Gênica/fisiologia , Hipóxia/genética , Hipóxia/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Exercício Físico/fisiologia , Feminino , Humanos , Lactatos/metabolismo , Ácido Láctico/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculos/metabolismo , Oxigênio/metabolismo , Policitemia/genética , Policitemia/metabolismo , Fatores de Transcrição/genética
2.
FASEB J ; 25(6): 2001-11, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21389259

RESUMO

The hypoxia-inducible factors (HIFs; isoforms HIF-1α, HIF-2α, HIF-3α) mediate many responses to hypoxia. Their regulation is principally by oxygen-dependent degradation, which is initiated by hydroxylation of specific proline residues followed by binding of von Hippel-Lindau (VHL) protein. Chuvash polycythemia is a disorder with elevated HIF. It arises through germline homozygosity for hypomorphic VHL alleles and has a phenotype of hematological, cardiopulmonary, and metabolic abnormalities. This study explores the phenotype of two other HIF pathway diseases: classic VHL disease and HIF-2α gain-of-function mutation. No cardiopulmonary abnormalities were detected in classic VHL disease. HIF-2α gain-of-function mutations were associated with pulmonary hypertension, increased cardiac output, increased heart rate, and increased pulmonary ventilation relative to metabolism. Comparison of the HIF-2α gain-of-function responses with data from studies of Chuvash polycythemia suggested that other aspects of the Chuvash phenotype were diminished or absent. In classic VHL disease, patients are germline heterozygous for mutations in VHL, and the present results suggest that a single wild-type allele for VHL is sufficient to maintain normal cardiopulmonary function. The HIF-2α gain-of-function phenotype may be more limited than the Chuvash phenotype either because HIF-1α is not elevated in the former condition, or because other HIF-independent functions of VHL are perturbed in Chuvash polycythemia.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Dióxido de Carbono/sangue , Fenômenos Fisiológicos Cardiovasculares/genética , Regulação da Expressão Gênica/fisiologia , Oxigênio/sangue , Doença de von Hippel-Lindau/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/sangue , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estudos de Casos e Controles , Teste de Esforço , Feminino , Humanos , Masculino , Mutação , Doença de von Hippel-Lindau/sangue , Doença de von Hippel-Lindau/genética
3.
J Cereb Blood Flow Metab ; 27(8): 1521-32, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17406659

RESUMO

Investigations into the blood oxygenation level-dependent (BOLD) functional MRI signal have used respiratory challenges with the aim of probing cerebrovascular physiology. Such challenges have altered the inspired partial pressures of either carbon dioxide or oxygen, typically to a fixed and constant level (fixed inspired challenge (FIC)). The resulting end-tidal gas partial pressures then depend on the subject's metabolism and ventilatory responses. In contrast, dynamic end-tidal forcing (DEF) rapidly and independently sets end-tidal oxygen and carbon dioxide to desired levels by altering the inspired gas partial pressures on a breath-by-breath basis using computer-controlled feedback. This study implements DEF in the MRI environment to map BOLD signal reactivity to CO(2). We performed BOLD (T2(*)) contrast FMRI in four healthy male volunteers, while using DEF to provide a cyclic normocapnic-hypercapnic challenge, with each cycle lasting 4 mins (PET(CO(2)) mean+/-s.d., from 40.9+/-1.8 to 46.4+/-1.6 mm Hg). This was compared with a traditional fixed-inspired (FI(CO(2))=5%) hypercapnic challenge (PET(CO(2)) mean+/-s.d., from 38.2+/-2.1 to 45.6+/-1.4 mm Hg). Dynamic end-tidal forcing achieved the desired target PET(CO(2)) for each subject while maintaining PET(O(2)) constant. As a result of CO(2)-induced increases in ventilation, the FIC showed a greater cyclic fluctuation in PET(O(2)). These were associated with spatially widespread fluctuations in BOLD signal that were eliminated largely by the control of PET(O(2)) during DEF. The DEF system can provide flexible, convenient, and physiologically well-controlled respiratory challenges in the MRI environment for mapping dynamic responses of the cerebrovasculature.


Assuntos
Dióxido de Carbono/sangue , Imageamento por Ressonância Magnética , Oxigênio/sangue , Volume de Ventilação Pulmonar , Adulto , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Circulação Cerebrovascular , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Masculino , Pressão Parcial , Fenômenos Fisiológicos Respiratórios
4.
J Appl Physiol (1985) ; 94(3): 1263-8; discussion 1253-4, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12571148

RESUMO

Sea-level (SL) natives acclimatizing to high altitude (HA) increase their acute ventilatory response to hypoxia (AHVR), but HA natives have values for AHVR below those for SL natives at SL (blunting). HA natives who live at SL retain some blunting of AHVR and have more marked blunting to sustained (20-min) hypoxia. This study addressed the question of what happens when HA natives resident at SL return to HA: do they acclimatize like SL natives or revert to the characteristics of HA natives? Fifteen HA natives resident at SL were studied, together with 15 SL natives as controls. Air-breathing end-tidal Pco(2) and AHVR were determined at SL. Subjects were then transported to 4,300 m, where these measurements were repeated on each of the following 5 days. There were no significant differences in the magnitude or time course of the changes in end-tidal Pco(2) and AHVR between the two groups. We conclude that HA natives normally resident at SL undergo ventilatory acclimatization to HA in the same manner as SL natives.


Assuntos
Adaptação Fisiológica/fisiologia , Altitude , Hipóxia/fisiopatologia , Plasticidade Neuronal/fisiologia , Adulto , Idoso , Dióxido de Carbono/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Testes de Função Respiratória , Mecânica Respiratória/fisiologia , Fatores de Tempo
5.
J Appl Physiol (1985) ; 94(3): 1255-62; discussion 1253-4, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12571147

RESUMO

High-altitude (HA) natives have blunted ventilatory responses to hypoxia (HVR), but studies differ as to whether this blunting is lost when HA natives migrate to live at sea level (SL), possibly because HVR has been assessed with different durations of hypoxic exposure (acute vs. sustained). To investigate this, 50 HA natives (>3,500 m, for >20 yr) now resident at SL were compared with 50 SL natives as controls. Isocapnic HVR was assessed by using two protocols: protocol 1, progressive stepwise induction of hypoxia over 5-6 min; and protocol 2, sustained (20-min) hypoxia (end-tidal Po(2) = 50 Torr). Acute HVR was assessed from both protocols, and sustained HVR from protocol 2. For HA natives, acute HVR was 79% [95% confidence interval (CI): 52-106%, P = not significant] of SL controls for protocol 1 and 74% (95% CI: 52-96%, P < 0.05) for protocol 2. By contrast, sustained HVR after 20-min hypoxia was only 30% (95% CI: -7-67%, P < 0.001) of SL control values. The persistent blunting of HVR of HA natives resident at SL is substantially less to acute than to sustained hypoxia, when hypoxic ventilatory depression can develop.


Assuntos
Altitude , Hipóxia/fisiopatologia , Plasticidade Neuronal/fisiologia , Mecânica Respiratória/fisiologia , Doença Aguda , Adulto , Idoso , Superfície Corporal , Dióxido de Carbono/sangue , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue
6.
Exp Physiol ; 87(5): 633-42, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12481938

RESUMO

During acclimatization to the hypoxia of altitude, the cerebral circulation is exposed to arterial hypoxia and hypocapnia, two stimuli with opposing influences on cerebral blood flow (CBF). In order to understand the resultant changes in CBF, this study examined the responses of CBF during a period of constant mild hypoxia both with and without concomitant regulation of arterial P(CO2). Nine subjects were each exposed to two protocols in a purpose-built chamber: (1) 48 h of isocapnic hypoxia (Protocol I), where end-tidal P(O2) (P(ET,O2)) was held at 60 Torr and end-tidal P(CO2) (P(ET,CO2)) at the subject's resting value prior to experimentation; and (2) 48 h of poikilocapnic hypoxia (Protocol P), where P(ET,O2) was held at 60 Torr and P(ET,CO2) was uncontrolled. Transcranial Doppler ultrasound was used to assess CBF. At 24 h intervals during and after the hypoxic exposure CBF was measured and the sensitivity of CBF to acute variations in P(O2) and P(CO2) was determined. During Protocol P, P(ET,CO2) decreased by 13% (P < 0.001) and CBF decreased by 6% (P < 0.05), whereas during Protocol I, P(ET,CO2) and CBF remained unchanged. The sensitivity of CBF to acute variations in P(O2) and P(CO2) increased by 103% (P < 0.001) and 28% (P < 0.01), respectively, over the 48 h period of hypoxia. These changes did not differ between protocols. In conclusion, CBF decreases during mild poikilocapnic hypoxia, indicating that there is a predominant effect on CBF of the associated arterial hypocapnia. This fall occurs despite increases in the sensitivity of CBF to acute variations in P(O2)/P(CO2) arising directly from the hypoxic exposure.


Assuntos
Dióxido de Carbono/sangue , Circulação Cerebrovascular/fisiologia , Hipocapnia/fisiopatologia , Doença Aguda , Adulto , Feminino , Humanos , Hipóxia Encefálica/fisiopatologia , Masculino , Ultrassonografia Doppler Transcraniana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA