Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Parasite Immunol ; 44(3): e12898, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34778983

RESUMO

AIMS: Malaria parasites exhibit daily rhythms in the intra-erythrocytic development cycle (IDC) that underpins asexual replication in the blood. The IDC schedule is aligned with the timing of host feeding-fasting rhythms. When the IDC schedule is perturbed to become mismatched to host rhythms, it readily reschedules but it is not known how. METHODS: We intensively follow four groups of infections that have different temporal alignments between host rhythms and the IDC schedule for 10 days, before and after the peak in asexual densities. We compare how the duration, synchrony and timing of the IDC differs between parasites in control infections and those forced to reschedule by 12 hours and ask whether the density of parasites affects the rescheduling process. RESULTS AND CONCLUSIONS: Our experiments reveal parasites shorten the IDC duration by 2-3 hours to become realigned to host feeding-fasting rhythms with 5-6 days, in a density-independent manner. Furthermore, parasites are able to reschedule without significant fitness costs for them or their hosts. Understanding the extent of, and limits on, plasticity in the IDC schedule may reveal targets for novel interventions, such as drugs to disrupt IDC regulation and preventing IDC dormancy conferring tolerance to existing drugs.


Assuntos
Malária , Parasitos , Plasmodium chabaudi , Animais , Ritmo Circadiano/fisiologia , Jejum , Malária/parasitologia , Malária/prevenção & controle , Plasmodium chabaudi/fisiologia
2.
Malar J ; 20(1): 105, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608011

RESUMO

BACKGROUND: Daily periodicity in the diverse activities of parasites occurs across a broad taxonomic range. The rhythms exhibited by parasites are thought to be adaptations that allow parasites to cope with, or exploit, the consequences of host activities that follow daily rhythms. Malaria parasites (Plasmodium) are well-known for their synchronized cycles of replication within host red blood cells. Whilst most species of Plasmodium appear sensitive to the timing of the daily rhythms of hosts, and even vectors, some species present no detectable rhythms in blood-stage replication. Why the intraerythrocytic development cycle (IDC) of, for example Plasmodium chabaudi, is governed by host rhythms, yet seems completely independent of host rhythms in Plasmodium berghei, another rodent malaria species, is mysterious. METHODS: This study reports a series of five experiments probing the relationships between the asynchronous IDC schedule of P. berghei and the rhythms of hosts and vectors by manipulating host time-of-day, photoperiod and feeding rhythms. RESULTS: The results reveal that: (i) a lack coordination between host and parasite rhythms does not impose appreciable fitness costs on P. berghei; (ii) the IDC schedule of P. berghei is impervious to host rhythms, including altered photoperiod and host-feeding-related rhythms; (iii) there is weak evidence for daily rhythms in the density and activities of transmission stages; but (iv), these rhythms have little consequence for successful transmission to mosquitoes. CONCLUSIONS: Overall, host rhythms do not affect the performance of P. berghei and its asynchronous IDC is resistant to the scheduling forces that underpin synchronous replication in closely related parasites. This suggests that natural variation in the IDC schedule across species represents different parasite strategies that maximize fitness. Thus, subtle differences in the ecological interactions between parasites and their hosts/vectors may select for the evolution of very different IDC schedules.


Assuntos
Anopheles/fisiologia , Ritmo Circadiano , Mosquitos Vetores/fisiologia , Plasmodium berghei/fisiologia , Reprodução Assexuada , Animais , Anopheles/parasitologia , Eritrócitos/parasitologia , Feminino , Mosquitos Vetores/parasitologia , Plasmodium berghei/crescimento & desenvolvimento
3.
Proc Biol Sci ; 287(1932): 20200347, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32781954

RESUMO

Circadian clocks coordinate organisms' activities with daily cycles in their environment. Parasites are subject to daily rhythms in the within-host environment, resulting from clock-control of host activities, including immune responses. Parasites also exhibit rhythms in their activities: the timing of within-host replication by malaria parasites is coordinated to host feeding rhythms. Precisely which host feeding-related rhythm(s) parasites align with and how this is achieved are unknown. Understanding rhythmic replication in malaria parasites matters because it underpins disease symptoms and fuels transmission investment. We test if rhythmicity in parasite replication is coordinated with the host's feeding-related rhythms and/or rhythms driven by the host's canonical circadian clock. We find that parasite rhythms coordinate with the time of day that hosts feed in both wild-type and clock-mutant hosts, whereas parasite rhythms become dampened in clock-mutant hosts that eat continuously. Our results hold whether infections are initiated with synchronous or with desynchronized parasites. We conclude that malaria parasite replication is coordinated to rhythmic host processes that are independent of the core-clock proteins PERIOD 1 and 2; most likely, a periodic nutrient made available when the host digests food. Thus, novel interventions could disrupt parasite rhythms to reduce their fitness, without interference by host clock-controlled homeostasis.


Assuntos
Relógios Circadianos , Interações Hospedeiro-Parasita/fisiologia , Plasmodium chabaudi/fisiologia , Animais , Ritmo Circadiano/fisiologia , Homeostase , Malária , Parasitos , Proteínas Circadianas Period
4.
PLoS Pathog ; 14(2): e1006900, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481559

RESUMO

Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host's peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host's peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new arena for studying host-parasite-vector coevolution and has broad implications for applied bioscience.


Assuntos
Ritmo Circadiano/fisiologia , Comportamento Alimentar/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Malária/parasitologia , Animais , Glicemia/análise , Microbioma Gastrointestinal/fisiologia , Homeostase , Malária/sangue , Malária/fisiopatologia , Masculino , Camundongos , Plasmodium chabaudi/crescimento & desenvolvimento , Plasmodium chabaudi/fisiologia
5.
Malar J ; 19(1): 17, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937300

RESUMO

BACKGROUND: The intraerythrocytic development cycle (IDC) of the rodent malaria Plasmodium chabaudi is coordinated with host circadian rhythms. When this coordination is disrupted, parasites suffer a 50% reduction in both asexual stages and sexual stage gametocytes over the acute phase of infection. Reduced gametocyte density may not simply follow from a loss of asexuals because investment into gametocytes ("conversion rate") is a plastic trait; furthermore, the densities of both asexuals and gametocytes are highly dynamic during infection. Hence, the reasons for the reduction of gametocytes in infections that are out-of-synch with host circadian rhythms remain unclear. Here, two explanations are tested: first, whether out-of-synch parasites reduce their conversion rate to prioritize asexual replication via reproductive restraint; second, whether out-of-synch gametocytes experience elevated clearance by the host's circadian immune responses. METHODS: First, conversion rate data were analysed from a previous experiment comparing infections of P. chabaudi that were in-synch or 12 h out-of-synch with host circadian rhythms. Second, three new experiments examined whether the inflammatory cytokine TNF varies in its gametocytocidal efficacy according to host time-of-day and gametocyte age. RESULTS: There was no evidence that parasites reduce conversion or that their gametocytes become more vulnerable to TNF when out-of-synch with host circadian rhythms. CONCLUSIONS: The factors causing the reduction of gametocytes in out-of-synch infections remain mysterious. Candidates for future investigation include alternative rhythmic factors involved in innate immune responses and the rhythmicity in essential resources required for gametocyte development. Explaining why it matters for gametocytes to be synchronized to host circadian rhythms might suggest novel approaches to blocking transmission.


Assuntos
Ritmo Circadiano , Eritrócitos/parasitologia , Malária/parasitologia , Plasmodium chabaudi/fisiologia , Fator de Necrose Tumoral alfa/administração & dosagem , Animais , Ritmo Circadiano/imunologia , Feminino , Citometria de Fluxo , Gametogênese/fisiologia , Modelos Lineares , Malária/sangue , Malária/imunologia , Masculino , Merozoítos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Plasmodium chabaudi/genética , Plasmodium chabaudi/crescimento & desenvolvimento , Plasmodium chabaudi/imunologia , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia
6.
Proc Biol Sci ; 285(1888)2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282657

RESUMO

Daily rhythms in behaviour, physiology and molecular processes are expected to enable organisms to appropriately schedule activities according to consequences of the daily rotation of the Earth. For parasites, this includes capitalizing on periodicity in transmission opportunities and for hosts/vectors, this may select for rhythms in immune defence. We examine rhythms in the density and infectivity of transmission forms (gametocytes) of rodent malaria parasites in the host's blood, parasite development inside mosquito vectors and potential for onwards transmission. Furthermore, we simultaneously test whether mosquitoes exhibit rhythms in susceptibility. We reveal that at night, gametocytes are twice as infective, despite being less numerous in the blood. Enhanced infectiousness at night interacts with mosquito rhythms to increase sporozoite burdens fourfold when mosquitoes feed during their rest phase. Thus, changes in mosquito biting time (owing to bed nets) may render gametocytes less infective, but this is compensated for by the greater mosquito susceptibility.


Assuntos
Anopheles/parasitologia , Mosquitos Vetores/fisiologia , Plasmodium chabaudi/fisiologia , Animais , Malária , Periodicidade
7.
Proc Biol Sci ; 284(1860)2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28768894

RESUMO

The trade-off between survival and reproduction is fundamental in the life history of all sexually reproducing organisms. This includes malaria parasites, which rely on asexually replicating stages for within-host survival and on sexually reproducing stages (gametocytes) for between-host transmission. The proportion of asexual stages that form gametocytes (reproductive effort) varies during infections-i.e. is phenotypically plastic-in response to changes in a number of within-host factors, including anaemia. However, how the density and age structure of red blood cell (RBC) resources shape plasticity in reproductive effort and impacts upon parasite fitness is controversial. Here, we examine how and why the rodent malaria parasite Plasmodium chabaudi alters its reproductive effort in response to experimental perturbations of the density and age structure of RBCs. We show that all four of the genotypes studied increase reproductive effort when the proportion of RBCs that are immature is elevated during host anaemia, and that the responses of the genotypes differ. We propose that anaemia (counterintuitively) generates a resource-rich environment in which parasites can afford to allocate more energy to reproduction (i.e. transmission) and that anaemia also exposes genetic variation to selection. From an applied perspective, adaptive plasticity in parasite reproductive effort could explain the maintenance of genetic variation for virulence and why anaemia is often observed as a risk factor for transmission in human infections.


Assuntos
Anemia/parasitologia , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Plasmodium chabaudi/fisiologia , Adaptação Fisiológica , Animais , Genótipo , Malária , Fenótipo , Reprodução
8.
Evol Appl ; 17(7): e13752, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39006006

RESUMO

Undertaking certain activities at the time of day that maximises fitness is assumed to explain the evolution of circadian clocks. Organisms often use daily environmental cues such as light and food availability to set the timing of their clocks. These cues may be the environmental rhythms that ultimately determine fitness, act as proxies for the timing of less tractable ultimate drivers, or are used simply to maintain internal synchrony. While many pathogens/parasites undertake rhythmic activities, both the proximate and ultimate drivers of their rhythms are poorly understood. Explaining the roles of rhythms in infections offers avenues for novel interventions to interfere with parasite fitness and reduce the severity and spread of disease. Here, we perturb several rhythms in the hosts of malaria parasites to investigate why parasites align their rhythmic replication to the host's feeding-fasting rhythm. We manipulated host rhythms governed by light, food or both, and assessed the fitness implications for parasites, and the consequences for hosts, to test which host rhythms represent ultimate drivers of the parasite's rhythm. We found that alignment with the host's light-driven rhythms did not affect parasite fitness metrics. In contrast, aligning with the timing of feeding-fasting rhythms may be beneficial for the parasite, but only when the host possess a functional canonical circadian clock. Because parasites in clock-disrupted hosts align with the host's feeding-fasting rhythms and yet derive no apparent benefit, our results suggest cue(s) from host food act as a proxy rather than being a key selective driver of the parasite's rhythm. Alternatively, parasite rhythmicity may only be beneficial because it promotes synchrony between parasite cells and/or allows parasites to align to the biting rhythms of vectors. Our results also suggest that interventions can disrupt parasite rhythms by targeting the proxies or the selective factors driving them without impacting host health.

9.
Behav Ecol ; 35(1): arad098, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38144906

RESUMO

Circadian rhythms are ubiquitous in nature and endogenous circadian clocks drive the daily expression of many fitness-related behaviors. However, little is known about whether such traits are targets of selection imposed by natural enemies. In Hawaiian populations of the nocturnally active Pacific field cricket (Teleogryllus oceanicus), males sing to attract mates, yet sexually selected singing rhythms are also subject to natural selection from the acoustically orienting and deadly parasitoid fly, Ormia ochracea. Here, we use T. oceanicus to test whether singing rhythms are endogenous and scheduled by circadian clocks, making them possible targets of selection imposed by flies. We also develop a novel audio-to-circadian analysis pipeline, capable of extracting useful parameters from which to train machine learning algorithms and process large quantities of audio data. Singing rhythms fulfilled all criteria for endogenous circadian clock control, including being driven by photoschedule, self-sustained periodicity of approximately 24 h, and being robust to variation in temperature. Furthermore, singing rhythms varied across individuals, which might suggest genetic variation on which natural and sexual selection pressures can act. Sexual signals and ornaments are well-known targets of selection by natural enemies, but our findings indicate that the circadian timing of those traits' expression may also determine fitness.

10.
Malar J ; 12: 372, 2013 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-24160251

RESUMO

BACKGROUND: In the blood, the synchronous malaria parasite, Plasmodium chabaudi, exhibits a cell-cycle rhythm of approximately 24 hours in which transitions between developmental stages occur at particular times of day in the rodent host. Previous experiments reveal that when the timing of the parasite's cell-cycle rhythm is perturbed relative to the circadian rhythm of the host, parasites suffer a (~50%) reduction in asexual stages and gametocytes. Why it matters for parasites to have developmental schedules in synchronization with the host's rhythm is unknown. The experiment presented here investigates this issue by: (a) validating that the performance of P. chabaudi is negatively affected by mismatch to the host circadian rhythm; (b) testing whether the effect of mismatch depends on the route of infection or the developmental stage of inoculated parasites; and, (c) examining whether the costs of mismatch are due to challenges encountered upon initial infection and/or due to ongoing circadian host processes operating during infection. METHODS: The experiment simultaneously perturbed the time of day infections were initiated, the stage of parasite inoculated, and the route of infection. The performance of parasites during the growth phase of infections was compared across the cross-factored treatment groups (i e, all combinations of treatments were represented). RESULTS: The data show that mismatch to host rhythms is costly for parasites, reveal that this phenomenon does not depend on the developmental stage of parasites nor the route of infection, and suggest that processes operating at the initial stages of infection are responsible for the costs of mismatch. Furthermore, mismatched parasites are less virulent, in that they cause less anaemia to their hosts. CONCLUSION: It is beneficial for parasites to be in synchronization with their host's rhythm, regardless of the route of infection or the parasite stage inoculated. Given that arrested cell-cycle development (quiescence) is implicated in tolerance to drugs, understanding how parasite schedules are established and maintained in the blood is important.


Assuntos
Ritmo Circadiano , Malária/parasitologia , Plasmodium chabaudi/crescimento & desenvolvimento , Roedores/fisiologia , Roedores/parasitologia , Animais , Masculino , Camundongos
11.
Proc Biol Sci ; 279(1737): 2487-96, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22357264

RESUMO

Maternally transferred immunity can have a fundamental effect on the ability of offspring to deal with infection. However, levels of antibodies in adults can vary both quantitatively and qualitatively between individuals and during the course of infection. How infection dynamics and their modification by drug treatment might affect the protection transferred to offspring remains poorly understood. Using the rodent malaria parasite Plasmodium chabaudi, we demonstrate that curing dams part way through infection prior to pregnancy can alter their immune response, with major consequences for offspring health and survival. In untreated maternal infections, maternally transferred protection suppressed parasitaemia and reduced pup mortality by 75 per cent compared with pups from naïve dams. However, when dams were treated with anti-malarial drugs, pups received fewer maternal antibodies, parasitaemia was only marginally suppressed, and mortality risk was 25 per cent higher than for pups from dams with full infections. We observed the same qualitative patterns across three different host strains and two parasite genotypes. This study reveals the role that within-host infection dynamics play in the fitness consequences of maternally transferred immunity. Furthermore, it highlights a potential trade-off between the health of mothers and offspring suggesting that anti-parasite treatment may significantly affect the outcome of infection in newborns.


Assuntos
Antimaláricos/efeitos adversos , Imunidade Materno-Adquirida/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/imunologia , Parasitemia/imunologia , Plasmodium chabaudi , Análise de Variância , Animais , Anticorpos Antiprotozoários/sangue , Feminino , Malária/mortalidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Gravidez
12.
Proc Biol Sci ; 279(1747): 4677-85, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23015626

RESUMO

Here, we test the hypothesis that virulent malaria parasites are less susceptible to drug treatment than less virulent parasites. If true, drug treatment might promote the evolution of more virulent parasites (defined here as those doing more harm to hosts). Drug-resistance mechanisms that protect parasites through interactions with drug molecules at the sub-cellular level are well known. However, parasite phenotypes associated with virulence might also help parasites survive in the presence of drugs. For example, rapidly replicating parasites might be better able to recover in the host if drug treatment fails to eliminate parasites. We quantified the effects of drug treatment on the in-host survival and between-host transmission of rodent malaria (Plasmodium chabaudi) parasites which differed in virulence and had never been previously exposed to drugs. In all our treatment regimens and in single- and mixed-genotype infections, virulent parasites were less sensitive to pyrimethamine and artemisinin, the two antimalarial drugs we tested. Virulent parasites also achieved disproportionately greater transmission when exposed to pyrimethamine. Overall, our data suggest that drug treatment can select for more virulent parasites. Drugs targeting transmission stages (such as artemisinin) may minimize the evolutionary advantage of virulence in drug-treated infections.


Assuntos
Antimaláricos/farmacologia , Malária/transmissão , Plasmodium chabaudi/patogenicidade , Pirimetamina/farmacologia , Animais , Resistência a Medicamentos/genética , Feminino , Genótipo , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Parasitária , Plasmodium chabaudi/efeitos dos fármacos , Plasmodium chabaudi/genética , Virulência
13.
Proc Biol Sci ; 278(1717): 2429-36, 2011 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-21208950

RESUMO

Circadian biology assumes that biological rhythms maximize fitness by enabling organisms to coordinate with their environment. Despite circadian clocks being such a widespread phenomenon, demonstrating the fitness benefits of temporal coordination is challenging and such studies are rare. Here, we tested the consequences--for parasites--of being temporally mismatched to host circadian rhythms using the rodent malaria parasite, Plasmodium chabaudi. The cyclical nature of malaria infections is well known, as the cell cycles across parasite species last a multiple of approximately 24 h, but the evolutionary explanations for periodicity are poorly understood. We demonstrate that perturbation of parasite rhythms results in a twofold cost to the production of replicating and transmission stages. Thus, synchronization with host rhythms influences in-host survival and between-host transmission potential, revealing a role for circadian rhythms in the evolution of host-parasite interactions. More generally, our results provide a demonstration of the adaptive value of circadian rhythms and the utility of using an evolutionary framework to understand parasite traits.


Assuntos
Relógios Circadianos , Fotoperíodo , Plasmodium chabaudi/fisiologia , Plasmodium chabaudi/efeitos da radiação , Doenças dos Roedores/parasitologia , Animais , Evolução Biológica , Ritmo Circadiano , Aptidão Genética , Interações Hospedeiro-Parasita , Luz , Malária/parasitologia , Malária/transmissão , Masculino , Camundongos , Reprodução , Doenças dos Roedores/transmissão
14.
Wellcome Open Res ; 6: 186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805551

RESUMO

Background: Rapid asexual replication of blood stage malaria parasites is responsible for the severity of disease symptoms and fuels the production of transmission forms. Here, we demonstrate that the Plasmodium chabaudi's schedule for asexual replication can be orchestrated by isoleucine, a metabolite provided to the parasite in periodic manner due to the host's rhythmic intake of food. Methods: We infect female C57BL/6 and Per1/2-null TTFL clock-disrupted mice with 1×10 5 red blood cells containing P. chabaudi (DK genotype). We perturb the timing of rhythms in asexual replication and host feeding-fasting cycles to identify nutrients with rhythms that match all combinations of host and parasite rhythms. We then test whether perturbing the availability of the best candidate nutrient in vitro elicits changes their schedule for asexual development. Results: Our large-scale metabolomics experiment and follow up experiments reveal that only one metabolite - the amino acid isoleucine - fits criteria for a time-of-day cue used by parasites to set the schedule for replication. The response to isoleucine is a parasite strategy rather than solely the consequences of a constraint imposed by host rhythms, because unlike when parasites are deprived of other essential nutrients, they suffer no apparent costs from isoleucine withdrawal. Conclusions: Overall, our data suggest parasites can use the daily rhythmicity of blood-isoleucine concentration to synchronise asexual development with the availability of isoleucine, and potentially other resources, that arrive in the blood in a periodic manner due to the host's daily feeding-fasting cycle. Identifying both how and why parasites keep time opens avenues for interventions; interfering with the parasite's time-keeping mechanism may stall replication, increasing the efficacy of drugs and immune responses, and could also prevent parasites from entering dormancy to tolerate drugs.

15.
Biol Imaging ; 1: e2, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35036920

RESUMO

Microscopic examination of blood smears remains the gold standard for laboratory inspection and diagnosis of malaria. Smear inspection is, however, time-consuming and dependent on trained microscopists with results varying in accuracy. We sought to develop an automated image analysis method to improve accuracy and standardization of smear inspection that retains capacity for expert confirmation and image archiving. Here, we present a machine learning method that achieves red blood cell (RBC) detection, differentiation between infected/uninfected cells, and parasite life stage categorization from unprocessed, heterogeneous smear images. Based on a pretrained Faster Region-Based Convolutional Neural Networks (R-CNN) model for RBC detection, our model performs accurately, with an average precision of 0.99 at an intersection-over-union threshold of 0.5. Application of a residual neural network-50 model to infected cells also performs accurately, with an area under the receiver operating characteristic curve of 0.98. Finally, combining our method with a regression model successfully recapitulates intraerythrocytic developmental cycle with accurate lifecycle stage categorization. Combined with a mobile-friendly web-based interface, called PlasmoCount, our method permits rapid navigation through and review of results for quality assurance. By standardizing assessment of Giemsa smears, our method markedly improves inspection reproducibility and presents a realistic route to both routine lab and future field-based automated malaria diagnosis.

16.
Nat Commun ; 11(1): 2763, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488076

RESUMO

Malaria parasites complete their intra-erythrocytic developmental cycle (IDC) in multiples of 24 h suggesting a circadian basis, but the mechanism controlling this periodicity is unknown. Combining in vivo and in vitro approaches utilizing rodent and human malaria parasites, we reveal that: (i) 57% of Plasmodium chabaudi genes exhibit daily rhythms in transcription; (ii) 58% of these genes lose transcriptional rhythmicity when the IDC is out-of-synchrony with host rhythms; (iii) 6% of Plasmodium falciparum genes show 24 h rhythms in expression under free-running conditions; (iv) Serpentine receptor 10 (SR10) has a 24 h transcriptional rhythm and disrupting it in rodent malaria parasites shortens the IDC by 2-3 h; (v) Multiple processes including DNA replication, and the ubiquitin and proteasome pathways, are affected by loss of coordination with host rhythms and by disruption of SR10. Our results reveal malaria parasites are at least partly responsible for scheduling the IDC and coordinating their development with host daily rhythms.


Assuntos
Ritmo Circadiano/fisiologia , Eritropoese/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Malária/metabolismo , Proteínas de Protozoários/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Animais , Proteínas de Caenorhabditis elegans , Modelos Animais de Doenças , Feminino , Expressão Gênica , Interações Hospedeiro-Parasita/genética , Humanos , Malária/parasitologia , Camundongos , Camundongos Knockout , Plasmodium chabaudi/genética , Plasmodium chabaudi/crescimento & desenvolvimento , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Receptores Acoplados a Proteínas G/genética , Roedores , Transcriptoma
17.
Evol Med Public Health ; 2019(1): 190-198, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31660151

RESUMO

BACKGROUND AND OBJECTIVES: Phenotypic plasticity enables organisms to maximize fitness by matching trait values to different environments. Such adaptive phenotypic plasticity is exhibited by parasites, which experience frequent environmental changes during their life cycle, between individual hosts and also in within-host conditions experienced during infections. Life history theory predicts that the evolution of adaptive phenotypic plasticity is limited by costs and constraints, but tests of these concepts are scarce. METHODOLOGY: Here, we induce phenotypic plasticity in malaria parasites to test whether mounting a plastic response to an environmental perturbation constrains subsequent plastic responses to further environmental change. Specifically, we perturb red blood cell resource availability to induce Plasmodium chabaudi to alter the trait values of several phenotypes underpinning within-host replication and between-host transmission. We then transfer parasites to unperturbed hosts to examine whether constraints govern the parasites' ability to alter these phenotypes in response to their new in-host environment. RESULTS: Parasites alter trait values in response to the within-host environment they are exposed to. We do not detect negative consequences, for within-host replication or between-host transmission, of previously mounting a plastic response to a perturbed within-host environment. CONCLUSIONS AND IMPLICATIONS: We suggest that malaria parasites are highly plastic and adapted to adjusting their phenotypes in response to the frequent changes in the within-host conditions they experience during infections. Our findings support the growing body of evidence that medical interventions, such as anti-parasite drugs, induce plastic responses that are adaptive and can facilitate the survival and potentially, drug resistance of parasites. LAY SUMMARY: Malaria parasites have evolved flexible strategies to cope with the changing conditions they experience during infections. We show that using such flexible strategies does not impact upon the parasites' ability to grow (resulting in disease symptoms) or transmit (spreading the disease).

18.
Parasit Vectors ; 12(1): 301, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31262362

RESUMO

BACKGROUND: Biological rhythms allow organisms to compartmentalise and coordinate behaviours, physiologies, and cellular processes with the predictable daily rhythms of their environment. There is increasing recognition that the biological rhythms of mosquitoes that vector parasites are important for global health. For example, whether perturbations in blood foraging rhythms as a consequence of vector control measures can undermine disease control. To address this, we explore the impacts of altered timing of blood-feeding on mosquito life history traits and malaria transmission. METHODS: We present three experiments in which Anopheles stephensi mosquitoes were fed in the morning or evening on blood that had different qualities, including: (i) chemical-induced or (ii) Plasmodium chabaudi infection-induced anaemia; (iii) Plasmodium berghei infection but no anaemia; or (iv) stemming from hosts at different times of day. We then compared whether time-of-day variation in blood meal characteristics influences mosquito fitness proxies relating to survival and reproduction, and malaria transmission proxies. RESULTS: Mosquito lifespan is not influenced by the time-of-day they received a blood meal, but several reproductive metrics are affected, depending on other blood characteristics. Overall, our data suggest that receiving a blood meal in the morning makes mosquitoes more likely to lay eggs, lay slightly sooner and have a larger clutch size. In keeping with previous work, P. berghei infection reduces mosquito lifespan and the likelihood of laying eggs, but time-of-day of blood-feeding does not impact upon these metrics nor on transmission of this parasite. CONCLUSION: The time-of-day of blood-feeding does not appear to have major consequences for mosquito fitness or transmission of asynchronous malaria species. If our results from a laboratory colony of mosquitoes living in benign conditions hold for wild mosquitoes, it suggests that mosquitoes have sufficient flexibility in their physiology to cope with changes in biting time induced by evading insecticide-treated bed nets. Future work should consider the impact of multiple feeding cycles and the abiotic stresses imposed by the need to forage for blood during times of day when hosts are not protected by bed nets.


Assuntos
Anopheles/parasitologia , Ritmo Circadiano , Comportamento Alimentar , Malária/transmissão , Mosquitos Vetores/parasitologia , Plasmodium berghei/fisiologia , Anemia , Animais , Anopheles/fisiologia , Feminino , Fertilidade , Humanos , Longevidade , Malária/parasitologia , Masculino , Camundongos , Mosquitos Vetores/fisiologia , Reprodução
19.
Nat Ecol Evol ; 3(4): 552-560, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30886375

RESUMO

Biological rhythms coordinate organisms' activities with daily rhythms in the environment. For parasites, this includes rhythms in both the external abiotic environment and the within-host biotic environment. Hosts exhibit rhythms in behaviours and physiologies, including immune responses, and parasites exhibit rhythms in traits underpinning virulence and transmission. Yet, the evolutionary and ecological drivers of rhythms in traits underpinning host defence and parasite offence are largely unknown. Here, we explore how hosts use rhythms to defend against infection, why parasites have rhythms and whether parasites can manipulate host clocks to their own ends. Harnessing host rhythms or disrupting parasite rhythms could be exploited for clinical benefit; we propose an interdisciplinary effort to drive this emerging field forward.


Assuntos
Evolução Biológica , Ritmo Circadiano , Interações Hospedeiro-Parasita , Animais , Ecologia , Humanos
20.
Evol Appl ; 12(2): 314-323, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30697342

RESUMO

Aging is associated with a decline of performance leading to reduced reproductive output and survival. While the antagonistic pleiotropy theory of aging has attracted considerable attention, the molecular/physiological functions underlying the early-life benefits/late-life costs paradigm remain elusive. We tested the hypothesis that while early activation of the inflammatory response confers benefits in terms of protection against infection, it also incurs costs in terms of reduced reproductive output at old age and shortened longevity. We infected mice with the malaria parasite Plasmodium yoelii and increased the inflammatory response using an anti-IL-10 receptor antibody treatment. We quantified the benefits and costs of the inflammatory response during the acute phase of the infection and at old age. In agreement with the antagonistic pleiotropy hypothesis, the inflammatory response provided an early-life benefit, since infected mice that were treated with anti-IL-10 receptor antibodies had reduced parasite density and anemia. However, at old age, mice in all treatment groups had similar levels of C-reactive protein, reproductive output, survival rate, and lifespan. Overall, our results do not support the hypothesis that the benefits of a robust response to malaria infection in early life incur longer term fitness costs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA