RESUMO
The functional screening of a Pseudacanthotermes militaris termite gut metagenomic library revealed an array of xylan-degrading enzymes, including P. militaris 25 (Pm25), a multimodular glycoside hydrolase family 10 (GH10). Sequence analysis showed details of the unusual domain organization of this enzyme. It consists of one catalytic domain, which is intercalated by two carbohydrate binding modules (CBMs) from family 4. The genes upstream of the genes encoding Pm25 are susC-susD-unk, suggesting Pm25 is a Xyn10C-like enzyme belonging to a polysaccharide utilization locus. The majority of Xyn10C-like enzymes shared the same interrupted domain architecture and were vastly distributed in different xylan utilization loci found in gut Bacteroidetes, indicating the importance of this enzyme in glycan acquisition for gut microbiota. To understand its unusual multimodularity and the possible role of the CBMs, a detailed characterization of the full-length Pm25 and truncated variants was performed. Results revealed that the GH10 catalytic module is specific toward the hydrolysis of xylan. Ligand binding results indicate that the GH10 module and the CBMs act independently, whereas the tandem CBM4s act synergistically with each other and improve enzymatic activity when assayed on insoluble polysaccharides. In addition, we show that the UNK protein upstream of Pm25 is able to bind arabinoxylan. Altogether, these findings contribute to a better understanding of the potential role of Xyn10C-like proteins in xylan utilization systems of gut bacteria.IMPORTANCE Xylan is the major hemicellulosic polysaccharide in cereals and contributes to the recalcitrance of the plant cell wall toward degradation. Members of the Bacteroidetes, one of the main phyla in rumen and human gut microbiota, have been shown to encode polysaccharide utilization loci dedicated to the degradation of xylan. Here, we present the biochemical characterization of a xylanase encoded by a Bacteroidetes strain isolated from the termite gut metagenome. This xylanase is a multimodular enzyme, the sequence of which is interrupted by the insertion of two CBMs from family 4. Our results show that this enzyme resembles homologues that were shown to be important for xylan degradation in rumen or human diet and show that the CBM insertion in the middle of the sequence seems to be a common feature in xylan utilization systems. This study shed light on our understanding of xylan degradation and plant cell wall deconstruction, which can be applied to several applications in food, feed, and bioeconomy.
Assuntos
Bacteroidetes/enzimologia , Endo-1,4-beta-Xilanases , Isópteros/microbiologia , Animais , Proteínas de Bactérias/genética , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Microbioma Gastrointestinal , Metagenoma , Xilanos/metabolismoRESUMO
Glycobiology is dogged by the relative scarcity of synthetic, defined oligosaccharides. Enzyme-catalysed glycosylation using glycoside hydrolases is feasible but is hampered by the innate hydrolytic activity of these enzymes. Protein engineering is useful to remedy this, but it usually requires prior structural knowledge of the target enzyme, and/or relies on extensive, time-consuming screening and analysis. Here, a straightforward strategy that involves rational rapid in silico analysis of protein sequences is described. The method pinpoints 6-12 single-mutant candidates to improve transglycosylation yields. Requiring very little prior knowledge of the target enzyme other than its sequence, the method is generic and procures catalysts for the formation of glycosidic bonds involving various d/l-, α/ß-pyranosides or furanosides, and exo or endo action. Moreover, mutations validated in one enzyme can be transposed to others, even distantly related enzymes.
Assuntos
Glicosídeo Hidrolases , Glicosiltransferases , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosilação , Glicosiltransferases/genética , Hidrólise , Oligossacarídeos , Especificidade por SubstratoRESUMO
The GH-51 α-l-arabinofuranosidase from Thermobacillus xylanilyticus (TxAbf) possesses versatile catalytic properties, displaying not only the ability to hydrolyze glycosidic linkages but also to synthesize furanobiosides in α-l-Araf and ß-d-Galf series. Herein, mutants are investigated to evaluate their ability to perform self-condensation, assessing both yield improvements and changes in regioselectivity. Overall yields of oligo-α-l-arabino- and oligo-ß-d-galactofuranosides were increased up to 4.8-fold compared to the wild-type enzyme. In depth characterization revealed that the mutants exhibit increased transfer rates and thus a hydrolysis/self-condensation ratio in favor of synthesis. The consequence of the substitution N216W is the creation of an additional binding subsite that provides the basis for an alternative acceptor substrate binding mode. As a result, mutants bearing N216W synthesize not only (1,2)-linked furanobiosides, but also (1,3)- and even (1,5)-linked furanobiosides. Since the self-condensation is under kinetic control, the yield of homo-disaccharides was maximized using higher substrate concentrations. In this way, the mutant R69H-N216W produced oligo-ß-d-galactofuranosides in > 70% yield. Overall, this study further demonstrates the potential usefulness of TxAbf mutants for glycosynthesis and shows how these might be used to synthesize biologically-relevant glycoconjugates.
Assuntos
Bacillales/enzimologia , Inibidores Enzimáticos/farmacologia , Furanos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Configuração de Carboidratos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Furanos/síntese química , Furanos/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Relação Estrutura-AtividadeRESUMO
Generally, carbohydrate-active enzymes are studied using chromogenic substrates that provide quick and easy color-based detection of enzyme-mediated hydrolysis. For feruloyl esterases, commercially available chromogenic ferulate derivatives are both costly and limited in terms of their experimental application. In this study, we describe solutions for these two issues, using a chemoenzymatic approach to synthesize different ferulate compounds. The overall synthetic routes towards commercially available 5-bromo-4-chloro-3-indolyl and 4-nitrophenyl 5-O-feruloyl-α-Ê-arabinofuranosides were significantly shortened (from 7 or 8 to 4-6 steps), and the transesterification yields were enhanced (from 46 to 73% and from 47 to 86%, respectively). This was achieved using enzymatic (immobilized Lipozyme® TL IM from Thermomyces lanuginosus) transesterification of unprotected vinyl ferulate to the primary hydroxy group of α-Ê-arabinofuranosides. Moreover, a novel feruloylated 4-nitrocatechol-1-yl-substituted butanetriol analog, containing a cleavable hydroxylated linker, was also synthesized in 32% overall yield in 3 steps (convergent synthesis). The latter route combined the regioselective functionalization of 4-nitrocatechol and enzymatic transferuloylation. The use of this strategy to characterize type A feruloyl esterase from Aspergillus niger reveals the advantages of this substrate for the characterizations of feruloyl esterases.
RESUMO
BACKGROUND: Microorganisms constitute a reservoir of enzymes involved in environmental carbon cycling and degradation of plant polysaccharides through their production of a vast variety of Glycoside Hydrolases (GH). The CAZyChip was developed to allow a rapid characterization at transcriptomic level of these GHs and to identify enzymes acting on hydrolysis of polysaccharides or glycans. RESULTS: This DNA biochip contains the signature of 55,220 bacterial GHs available in the CAZy database. Probes were designed using two softwares, and microarrays were directly synthesized using the in situ ink-jet technology. CAZyChip specificity and reproducibility was validated by hybridization of known GHs RNA extracted from recombinant E. coli strains, which were previously identified by a functional metagenomic approach. The GHs arsenal was also studied in bioprocess conditions using rumen derived microbiota. CONCLUSIONS: The CAZyChip appears to be a user friendly tool for profiling the expression of a large variety of GHs. It can be used to study temporal variations of functional diversity, thereby facilitating the identification of new efficient candidates for enzymatic conversions from various ecosystems.
Assuntos
Glicosídeo Hidrolases/genética , Metagenoma , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de RNA/métodos , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Bases de Dados Genéticas , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Plantas/metabolismo , Polissacarídeos/metabolismoRESUMO
We describe here the identification and characterization of two novel enzymes belonging to the IlvD/EDD protein family, the D-xylonate dehydratase from Caulobacter crescentus, Cc XyDHT, (EC 4.2.1.82), and the L-arabonate dehydratase from Rhizobium leguminosarum bv. trifolii, Rl ArDHT (EC 4.2.1.25), that produce the corresponding 2-keto-3-deoxy-sugar acids. There is only a very limited amount of characterization data available on pentonate dehydratases, even though the enzymes from these oxidative pathways have potential applications with plant biomass pentose sugars. The two bacterial enzymes share 41 % amino acid sequence identity and were expressed and purified from Escherichia coli as homotetrameric proteins. Both dehydratases were shown to accept pentonate and hexonate sugar acids as their substrates and require Mg(2+) for their activity. Cc XyDHT displayed the highest activity on D-xylonate and D-gluconate, while Rl ArDHT functioned best on D-fuconate, L-arabonate and D-galactonate. The configuration of the OH groups at C2 and C3 position of the sugar acid were shown to be critical, and the C4 configuration also contributed substantially to the substrate recognition. The two enzymes were also shown to contain an iron-sulphur [Fe-S] cluster. Our phylogenetic analysis and mutagenesis studies demonstrated that the three conserved cysteine residues in the aldonic acid dehydratase group of IlvD/EDD family members, those of C60, C128 and C201 in Cc XyDHT, and of C59, C127 and C200 in Rl ArDHT, are needed for coordination of the [Fe-S] cluster. The iron-sulphur cluster was shown to be crucial for the catalytic activity (kcat) but not for the substrate binding (Km) of the two pentonate dehydratases.
Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/enzimologia , Hidroliases/genética , Hidroliases/metabolismo , Rhizobium leguminosarum/enzimologia , Sequência de Aminoácidos , Arabinose/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Gluconatos/metabolismo , Alinhamento de Sequência , Xilose/metabolismoRESUMO
Carbohydrates are ubiquitous in Nature and play vital roles in many biological systems. Therefore the synthesis of carbohydrate-based compounds is of considerable interest for both research and commercial purposes. However, carbohydrates are challenging, due to the large number of sugar subunits and the multiple ways in which these can be linked together. Therefore, to tackle the challenge of glycosynthesis, chemists are increasingly turning their attention towards enzymes, which are exquisitely adapted to the intricacy of these biomolecules. In Nature, glycosidic linkages are mainly synthesized by Leloir glycosyltransferases, but can result from the action of non-Leloir transglycosylases or phosphorylases. Advantageously for chemists, non-Leloir transglycosylases are glycoside hydrolases, enzymes that are readily available and exhibit a wide range of substrate specificities. Nevertheless, non-Leloir transglycosylases are unusual glycoside hydrolases in as much that they efficiently catalyse the formation of glycosidic bonds, whereas most glycoside hydrolases favour the mechanistically related hydrolysis reaction. Unfortunately, because non-Leloir transglycosylases are almost indistinguishable from their hydrolytic counterparts, it is unclear how these enzymes overcome the ubiquity of water, thus avoiding the hydrolytic reaction. Without this knowledge, it is impossible to rationally design non-Leloir transglycosylases using the vast diversity of glycoside hydrolases as protein templates. In this critical review, a careful analysis of literature data describing non-Leloir transglycosylases and their relationship to glycoside hydrolase counterparts is used to clarify the state of the art knowledge and to establish a new rational basis for the engineering of glycoside hydrolases.
Assuntos
Metabolismo dos Carboidratos , Evolução Molecular , Glicoproteínas/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/metabolismo , Modelos Moleculares , Engenharia de Proteínas , Animais , Biocatálise , Domínio Catalítico , Glicoproteínas/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/genética , Humanos , Hidrólise , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Conformação Proteica , Engenharia de Proteínas/tendências , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , TermodinâmicaRESUMO
α-L-arabinofuranosidases are glycoside hydrolases that specifically hydrolyze non-reducing residues from arabinose-containing polysaccharides. In the case of arabinoxylans, which are the main components of hemicellulose, they are part of microbial xylanolytic systems and are necessary for complete breakdown of arabinoxylans. Glycoside hydrolase family 62 (GH62) is currently a small family of α-L-arabinofuranosidases that contains only bacterial and fungal members. Little is known about the GH62 mechanism of action, because only a few members have been biochemically characterized and no three-dimensional structure is available. Here, we present the first crystal structures of two fungal GH62 α-L-arabinofuranosidases from the basidiomycete Ustilago maydis (UmAbf62A) and ascomycete Podospora anserina (PaAbf62A). Both enzymes are able to efficiently remove the α-L-arabinosyl substituents from arabinoxylan. The overall three-dimensional structure of UmAbf62A and PaAbf62A reveals a five-bladed ß-propeller fold that confirms their predicted classification into clan GH-F together with GH43 α-L-arabinofuranosidases. Crystallographic structures of the complexes with arabinose and cellotriose reveal the important role of subsites +1 and +2 for sugar binding. Intriguingly, we observed that PaAbf62A was inhibited by cello-oligosaccharides and displayed binding affinity to cellulose although no activity was observed on a range of cellulosic substrates. Bioinformatic analyses showed that UmAbf62A and PaAbf62A belong to two distinct subfamilies within the GH62 family. The results presented here provide a framework to better investigate the structure-function relationships within the GH62 family.
Assuntos
Proteínas Fúngicas/química , Glicosídeo Hidrolases/química , Família Multigênica , Podospora/enzimologia , Ustilago/enzimologia , Arabinose/metabolismo , Calorimetria , Domínio Catalítico , Celulose/metabolismo , Cristalografia por Raios X , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Cinética , Modelos Moleculares , FilogeniaRESUMO
BACKGROUND: The development of enzyme-mediated glycosynthesis using glycoside hydrolases is still an inexact science, because the underlying molecular determinants of transglycosylation are not well understood. In the framework of this challenge, this study focused on the family GH51 α-l-arabinofuranosidase from Thermobacillus xylanilyticus, with the aim to understand why the mutation of position 344 provokes a significant modification of the transglycosylation/hydrolysis partition. METHODS: Detailed kinetic analysis (kcat, KM, pKa determination and time-course NMR kinetics) and saturation transfer difference nuclear magnetic resonance spectroscopy was employed to determine the synthetic and hydrolytic ability modification induced by the redundant N344 mutation disclosed in libraries from directed evolution. RESULTS: The mutants N344P and N344Y displayed crippled hydrolytic abilities, and thus procured improved transglycosylation yields. This behavior was correlated with an increased pKa of the catalytic nucleophile (E298), the pKa of the acid/base catalyst remaining unaffected. Finally, mutations at position 344 provoked a pH-dependent product inhibition phenomenon, which is likely to be the result of a significant modification of the proton sharing network in the mutants. CONCLUSIONS AND GENERAL SIGNIFICANCE: Using a combination of biochemical and biophysical methods, we have studied TxAbf-N344 mutants, thus revealing some fundamental details concerning pH modulation. Although these results concern a GH51 α-l-arabinofuranosidase, it is likely that the general lessons that can be drawn from them will be applicable to other glycoside hydrolases. Moreover, the effects of mutations at position 344 on the transglycosylation/hydrolysis partition provide clues as to how TxAbf can be further engineered to obtain an efficient transfuranosidase.
Assuntos
Arabinose/metabolismo , Bacillaceae/enzimologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Mutação/genética , Bacillaceae/genética , Bacillaceae/metabolismo , Catálise , Domínio Catalítico , Cromatografia em Camada Fina , Glicosídeo Hidrolases/química , Glicosilação , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Especificidade por SubstratoRESUMO
BACKGROUND: The detailed characterization of arabinoxylan-active enzymes, such as double-substituted xylan arabinofuranosidase activity, is still a challenging topic. Ad hoc chromogenic substrates are useful tools and can reveal subtle differences in enzymatic behavior. In this study, enzyme selectivity on natural substrates has been compared with enzyme selectivity towards aryl-glycosides. This has proven to be a suitable approach to understand how artificial substrates can be used to characterize arabinoxylan-active α-l-arabinofuranosidases (Abfs). METHODS: Real-time NMR using a range of artificial chromogenic, synthetic pseudo-natural and natural substrates was employed to determine the hydrolytic abilities and specificity of different Abfs. RESULTS: The way in which synthetic di-arabinofuranosylated substrates are hydrolyzed by Abfs mirrors the behavior of enzymes on natural arabinoxylo-oligosaccharide (AXOS). Family GH43 Abfs that are strictly specific for mono-substituted d-xylosyl moieties (AXH-m) do not hydrolyze synthetic di-arabinofuranosylated substrates, while those specific for di-substituted moieties (AXH-d) remove a single l-arabinofuranosyl (l-Araf) group. GH51 Abfs, which are supposedly AXH-m enzymes, can release l-Araf from disubstituted d-xylosyl moieties, when these are non-reducing terminal groups. CONCLUSIONS AND GENERAL SIGNIFICANCE: The present study reveals that although the activity of Abfs on artificial substrates can be quite different from that displayed on natural substrates, enzyme specificity is well conserved. This implies that carefully chosen artificial substrates bearing di-arabinofuranosyl d-xylosyl moieties are convenient tools to probe selectivity in new Abfs. Moreover, this study has further clarified the relative promiscuity of GH51 Abfs, which can apparently hydrolyze terminal disubstitutions in AXOS, albeit less efficiently than mono-substituted motifs.
Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Glicosídeo Hidrolases/química , Oligossacarídeos/química , Bacillus/genética , Proteínas de Bactérias/genética , Glicosídeo Hidrolases/genética , Ressonância Magnética Nuclear Biomolecular , Oligossacarídeos/genética , Especificidade por Substrato/fisiologiaRESUMO
Biocatalysts are essential for the development of bioprocesses efficient for plant biomass degradation. Previously, a metagenomic clone containing DNA from termite gut microbiota was pinpointed in a functional screening that revealed the presence of arabinofuranosidase activity. Subsequent genetic and bioinformatic analysis revealed that the DNA fragment belonged to a member of the genus Bacteroides and encoded 19 open reading frames (ORFs), and annotation suggested the presence of hypothetical transporter and regulator proteins and others involved in the catabolism of pentose sugar. In this respect and considering the phenotype of the metagenomic clone, it was noted that among the ORFs, there are four putative arabinose-specific glycoside hydrolases, two from family GH43 and two from GH51. In this study, a thorough bioinformatics analysis of the metagenomic clone gene cluster has been performed and the four aforementioned glycoside hydrolases have been characterized. Together, the results provide evidence that the gene cluster is a polysaccharide utilization locus dedicated to the breakdown of the arabinan component in pectin and related substrates. Characterization of the two GH43 and the two GH51 glycoside hydrolases has revealed that each of these enzymes displays specific catalytic capabilities and that when these are combined the enzymes act synergistically, increasing the efficiency of arabinan degradation.
Assuntos
Bacteroides/genética , Bacteroides/metabolismo , Isópteros/microbiologia , Redes e Vias Metabólicas/genética , Polissacarídeos/metabolismo , Animais , Biologia Computacional , Trato Gastrointestinal/microbiologia , Glicosídeo Hidrolases/genética , Metagenômica , Família MultigênicaRESUMO
Among a large collection of Tunisian hot springs bacterial isolates a bacterial strain, THE22(T) , with xylanolytic properties was identified. The bacterium was isolated from a natural hot spring "Ain Echefa" at Mediteranean sea (Korbous, North-Eastern Tunisia). The novel strain was Gram positive, spore-forming, rod-shaped, facultatively anaerobic and grew optimally under conditions of 55 °C, 1% (w/v) NaCl and pH 7-8. The 16S rRNA gene sequence analysis showed that strain THE22(T) fell within the radiation of the cluster comprising Paenibacillus species with Paenibacillus phyllosphaerae PALXIL04(T) as the closest phylogenetic neighbour (95.8%). The predominant components in the fatty methyl ester profile were iso-C16:0 (34.46%), C16:0 (19.64%), anteiso-C15:0 (19.18%) and anteiso-C17:0 (18.11%). The major respiratory quinone was menaquinone-7 (MK-7). The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. The base composition of DNA was 56 mol%. Based on the polyphasic taxonomic data, strain THE-22(T) (=DSM 18499(T) = LMG 23758(T) ) was recognized as a novel species within the genus Paenibacillus. The name Paenibacillus marinum sp. nov. is proposed.
Assuntos
Fontes Termais/microbiologia , Paenibacillus/classificação , Paenibacillus/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , Análise por Conglomerados , Citoplasma/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Hidrólise , Mar Mediterrâneo , Microscopia , Dados de Sequência Molecular , Paenibacillus/genética , Paenibacillus/metabolismo , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Esporos Bacterianos/citologia , Tunísia , Xilanos/metabolismoRESUMO
Selecting wall-nibblers: Three 4-nitrocatechol derivatives were designed to facilitate high-throughput screening of arabinofuranose hydrolases, enzymes that typically digest plant cell walls. The designed compounds can be used in solid and liquid media, and, importantly, one allows the specific detection of AXH-d, a specialized enzyme that only releases L-arabinose from disubstituted D-xylosyl moieties.
Assuntos
Arabinose/análogos & derivados , Catecóis/metabolismo , Ensaios Enzimáticos/métodos , Escherichia coli/enzimologia , Nitrocompostos/metabolismo , Arabinose/química , Arabinose/metabolismo , Catecóis/química , Colorimetria/métodos , Escherichia coli/metabolismo , Hidrólise , Nitrocompostos/químicaRESUMO
An ultraviolet-radiation-resistant, Gram-positive, orange-pigmented, thermophilic and strictly aerobic cocci was isolated from Saharan water hot spring in Tunisia. The newly isolated bacterium, designated HAN-23(T), was identified based on polyphasic taxonomy including genotypic, phenotypic and chemotaxonomic characterization. Phylogenetic analysis based on 16S rRNA gene sequences placed this strain within Deinococcus genus. However, strain HAN-23(T) is different from recognized species of the genus Deinococcus, showing less than 94.0% similarity values to its closest relatives. The predominant cellular fatty acids determined by gas chromatography were iso-C(15:0), iso-C(17:0) and iso C(17:1) ω9c. The major respiratory quinone was MK-8. The DNA G + C content was 66.9 mol%. DNA-DNA hybridization measurements revealed low DNA relatedness (6%) between the novel isolate and its closest neighbor, the type strain Deinococcus geothermalis DSM 11300. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain HAN-23(T) represents a novel species of the genus Deinococcus, for which the name Deinococcus sahariens sp. nov. is proposed, the type strain being HAN-23(T) (=DSM 18496(T); LMG 23756(T)).
Assuntos
Deinococcus/classificação , Deinococcus/efeitos da radiação , Fontes Termais/microbiologia , Tolerância a Radiação , Composição de Bases , DNA Bacteriano/química , Deinococcus/isolamento & purificação , Ácidos Graxos/análise , Filogenia , Tunísia , Raios UltravioletaRESUMO
The secretome of Penicillium funiculosum contains two family GH7 enzymes, one of which (designated XynA) has been described as a xylanase. This is unusual because it is the only xylanase in family GH7, which is mainly composed of cellobiohydrolases and endoglucanases, and also because XynA is highly similar to the cellobiohydrolase I from Talaromyces emersonii and Trichoderma reesei (72 and 65 % identity, respectively). To probe this enigma, we investigated the biochemical properties of XynA, notably its activity on xylans and ß-D-glucans. A highly pure sample of XynA was obtained and used to perform hydrolysis tests on polysaccharides. These revealed that XynA is 100-fold more active on ß-1,4-glucan than on xylan. Likewise, XynA was active on both 4-nitrophenyl-ß-D-lactopyranoside (pNP-ß-D-Lac) and 4-nitrophenyl-ß-D-cellobioside (pNP-cellobiose), which shows that XynA is principally an exo-acting type 1 cellobiohydrolase enzyme that displays 5.2-fold higher performance on pNP-cellobiose than on pNP-ß-D-Lac. Finally, analyses performed using cellodextrins as substrate revealed that XynA mainly produced cellobiose (C2) from substrates containing three or more glucosyl subunits, and that C2 inhibits XynA at high concentrations (IC(50) (C2) = 17.7 µM). Overall, this study revealed that XynA displays typical cellobiohydrolase 1 activity and confirms that the description of this enzyme in public databases should be definitively amended. Moreover, the data provided here complete the information provided by a previous proteomics investigation and reveal that P. funiculosum secretes a complete set of cellulose-degrading enzymes.
Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Penicillium/enzimologia , Celobiose/análogos & derivados , Celobiose/metabolismo , Celulase/metabolismo , Celulose/análogos & derivados , Celulose/metabolismo , Dextrinas/metabolismo , Glucanos/metabolismo , Hidrólise , Especificidade por Substrato , Talaromyces/enzimologia , Trichoderma/enzimologia , Xilanos/metabolismo , beta-Glucanas/metabolismoRESUMO
Irrespective of their biological origin, most proteins are composed of several elementary domains connected by linkers. These domains are either functionally independent units, or part of larger multidomain structures whose functions are defined by their spatial proximity. Carbohydrate-degrading enzymes provide examples of a range of multidomain structures, in which catalytic protein domains are frequently appended to one or more non-catalytic carbohydrate-binding modules which specifically bind to carbohydrate motifs. While the carbohydrate-binding specificity of these modules is clear, their function is not fully elucidated. Herein, an original approach to tackle the study of carbohydrate-binding modules using the Jo-In biomolecular welding protein pair is presented. To provide a proof of concept, recombinant xylanases appended to two different carbohydrate-binding modules have been created and produced. The data reveal the biochemical properties of four xylanase variants and provide the basis for correlating enzyme activity to structural properties and to the nature of the substrate and the ligand specificity of the appended carbohydrate-binding module. It reveals that specific spatial arrangements favour activity on soluble polymeric substrates and that activity on such substrates does not predict the behaviour of multimodular enzymes on insoluble plant cell wall samples. The results highlight that the Jo-In protein welding system is extremely useful to design multimodular enzyme systems, especially to create rigid conformations that decrease the risk of intermodular interference. Further work on Jo-In will target the introduction of varying degrees of flexibility, providing the means to study this property and the way it may influence multimodular enzyme functions.
Assuntos
Parede Celular , Endo-1,4-beta-Xilanases , Células Vegetais/enzimologia , Engenharia de Proteínas , Carboidratos , Domínio Catalítico , Parede Celular/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Especificidade por SubstratoRESUMO
The use of retaining glycoside hydrolases as synthetic tools for glycochemistry is highly topical and the focus of considerable research. However, due to the incomplete identification of the molecular determinants of the transglycosylation/hydrolysis partition (t/h), rational engineering of retaining glycoside hydrolases to create transglycosylases remains challenging. Therefore, to understand better the factors that underpin transglycosylation in a GH51 retaining α-l-arabinofuranosidase from Thermobacillus xylanilyticus, the investigation of this enzyme's active site was pursued. Specifically, the properties of two mutants, F26L and L352M, located in the vicinity of the active site are described, using kinetic and 3D structural analyses and molecular dynamics simulations. The results reveal that the presence of L352M in the context of a triple mutant (also containing R69H and N216W) generates changes both in the donor and acceptor subsites, the latter being the result of a domino-like effect. Overall, the mutant R69H-N216W-L352M displays excellent transglycosylation activity (70 % yield, 78 % transfer rate and reduced secondary hydrolysis of the product). In the course of this study, the central role played by the conserved R69 residue was also reaffirmed. The mutation R69H affects both the catalytic nucleophile and the acid/base, including their flexibility, and has a determinant effect on the t/h partition. Finally, the results reveal that increased loop flexibility in the acceptor subsites creates new interactions with the acceptor, in particular with a hydrophobic binding platform composed of N216W, W248 and W302.
Assuntos
Glicosídeo Hidrolases/metabolismo , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosilação , Hidrólise , Modelos Moleculares , MutaçãoRESUMO
A polyphasic approach was used to characterize a bacterium, HAN-85(T), isolated from thermal water in natural thermal spring at Tozeur, an oasis in southwest Tunisia. The novel isolate was thermophilic, strictly aerobic and amylolytic bacterium, which stained Gram negative. Cells were short rods motile by means of a single polar flagellum. Their optimum temperature and pH required for growth were 55 degrees C and pH 7, respectively. Comparative 16S rRNA gene sequence analyses showed that strain HAN-85(T) belonged to the genus Caldimonas, with highest sequence similarity to the type strains Caldimonas manganoxidans and Caldimonas taiwanensis. DNA-DNA hybridization measurements revealed low DNA relatedness (35.2-44.5%) between the novel isolate and its closest relative, C. manganoxidans. The major cellular fatty acid components were 16:0, 17:0 cyclo and summed feature 3. The DNA G+C content was 68.3 mol%. Taken together, the results of DNA-DNA hybridization, fatty acids profile, physiological tests and biochemical analyses have allowed the genotypic and phenotypic differentiation of the isolate from currently recognized Caldimonas species. Therefore, we suggest that this isolate is a novel species within the genus Caldimonas and propose that it should be named Caldimonas hydrothermale sp. nov. The type strain is HAN-85(T) (=DSM 18497(T) =LMG 23755(T)).
Assuntos
Comamonadaceae/classificação , Comamonadaceae/isolamento & purificação , Fontes Termais/microbiologia , Aerobiose , Composição de Bases , Comamonadaceae/citologia , Comamonadaceae/fisiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes de RNAr , Genótipo , Temperatura Alta , Dados de Sequência Molecular , Filogenia , Temperatura , TunísiaRESUMO
Endo-beta-1,4-xylanases (EC 3.2.1.8) are the main enzymes involved in the hydrolysis of xylans, the most abundant hemicelluloses in plant biomass. However, the development of efficient endoxylanases for use in biorefinery processes is currently hampered by insufficient knowledge regarding the impact of the cell wall network organization on the action of the enzyme at the supramolecular level. The action pattern of a GH11 endoxylanase from Thermobacillus xylanilyticus (Tx-xyl) was investigated by means of in vitro reconstituted model systems which can mimic certain cell wall structures. The action of Tx-xyl was evaluated on polymer assemblies displaying increasing complexity using delignified glucuronoarabinoxylan (GAX), then GAX-DHP model complexes obtained by oxidative polymerization of coniferyl alcohol into dehydrogenation polymers (DHP: lignin model compounds) in the presence of GAX. At a high concentration of GAX, interchain associations are formed leading to high molecular weight aggregates. These structures did not appear to affect the action of endoxylanase, which induces disaggregation of the self-aggregates along with polymer depolymerization. To mimic lignin-carbohydrate interactions, two different GAX-DHP nanocomposites were prepared and incubated with endoxylanase. In both cases, free GAX was hydrolyzed, while the GAX-DHP complexes appeared to be resistant. In the case of the noncovalently linked GAX-DHP(ZL) complexes, enzyme action favored a decrease in particle size, owing to the removal of their relatively exposed carbohydrate chains, whereas the complex supramolecular organization of the covalently linked GAX-DHP(ZT) complexes severely hampers the enzyme's access to carbohydrate. Overall, these results establish the negative impact of DHP on the endoxylanase action and provide new knowledge regarding the limitations of the enzyme action in the lignocellulose bioconversion processes.
Assuntos
Carboidratos/química , Endo-1,4-beta-Xilanases/metabolismo , Lignina/química , Xilanos/metabolismo , Proteínas de Bactérias/metabolismo , Configuração de Carboidratos , Modelos MolecularesRESUMO
The crystal structure of the family GH-51 alpha- l-arabinofuranosidase from Thermobacillus xylanilyticus has been solved as a seleno-methionyl derivative. In addition, the structure of an inactive mutant Glu176Gln is presented in complex with a branched pentasaccharide, a fragment of its natural substrate xylan. The overall structure shows the two characteristic GH-51 domains: a catalytic domain that is folded into a (beta/alpha) 8-barrel and a C-terminal domain that displays jelly roll architecture. The pentasaccharide is bound in a groove on the surface of the enzyme, with the mono arabinosyl branch entering a tight pocket harboring the catalytic dyad. Detailed analyses of both structures and comparisons with the two previously determined structures from Geobacillus stearothermophilus and Clostridium thermocellum reveal important details unique to the Thermobacillus xylanilyticus enzyme. In the absence of substrate, the enzyme adopts an open conformation. In the substrate-bound form, the long loop connecting beta-strand 2 to alpha-helix 2 closes the active site and interacts with the substrate through residues His98 and Trp99. The results of kinetic and fluorescence titration studies using mutants underline the importance of this loop, and support the notion of an interaction between Trp99 and the bound substrate. We suggest that the changes in loop conformation are an integral part of the T. xylanilyticus alpha- l-arabinofuranosidase reaction mechanism, and ensure efficient binding and release of substrate.