Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 68(10): e2300620, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38708685

RESUMO

SCOPE: Milk extracellular vesicles (EVs) are nanosized particles with potential immune bioactivities. This study examines their fate during in vitro infant gastrointestinal digestion (GI). METHODS AND RESULTS: Bovine milk is digested using the in vitro INFOGEST method, adjusted for the infant. To unravel the contribution of digestive enzymes from bile, milk is treated with digestive enzymes, bile, or a combination of both. EVs are collected posttreatment using differential ultracentrifugation. EVs characterization includes electrophoresis, immunoblotting, nanoparticle tracking analysis, and atomic force microscopy. EVs protein markers programmed cell death 6-interacting protein (ALIX), tumor susceptibility gene 101 (TSG101), cluster of differentiation 9 (CD9), and xanthine dehydrogenase (XDH) are detected after gastric digestion (G60), but their signal intensity is significantly reduced by intestinal conditions (p < 0.05). Enzyme digestion, compared to bile treatment (I60 + bile), results in a significant reduction of signal intensities for TSG101 and CD9 (p < 0.05). Nanoparticle tracking analysis shows a significant reduction (p < 0.05) of EV numbers at the end of the intestinal phase. EVs are detected by atomic force microscopy at the end of the intestinal phase, showing that intact EVs can survive upper gut digestion. CONCLUSION: Intact EVs can be found at the end of the intestinal phase. However, digestive enzymes and bile reduce the quantity and characteristics of EVs, with digestive enzymes playing a larger role.


Assuntos
Bile , Digestão , Vesículas Extracelulares , Leite , Vesículas Extracelulares/metabolismo , Animais , Bile/metabolismo , Digestão/fisiologia , Leite/química , Bovinos , Proteínas de Ligação a DNA , Fatores de Transcrição , Complexos Endossomais de Distribuição Requeridos para Transporte
2.
Mol Oncol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105395

RESUMO

Circulating tumor cells (CTCs) have potential as diagnostic, prognostic, and predictive biomarkers in solid tumors. Despite Food and Drug Administration (FDA) approval of CTC devices in various cancers, the rarity and heterogeneity of CTCs in lung cancer make them technically challenging to isolate and analyze, hindering their clinical integration. Establishing a consensus through comparative analysis of different CTC systems is warranted. This study aimed to evaluate seven different CTC enrichment methods across five technologies using a standardized spike-in protocol: the CellMag™ (EpCAM-dependent enrichment), EasySep™ and RosetteSep™ (blood cell depletion), and the Parsortix® PR1 and the new design Parsortix® Prototype (PP) (size- and deformability-based enrichment). The Parsortix® systems were also evaluated for any differences in recovery rates between cell harvest versus in-cassette staining. Healthy donor blood (5 mL) was spiked with 100 fluorescently labeled EpCAMhigh H1975 cells, processed through each system, and the isolation efficiency was calculated. The CellMag™ had the highest recovery rate (70 ± 14%), followed by Parsortix® PR1 in-cassette staining, while the EasySep™ had the lowest recovery (18 ± 8%). Additional spike-in experiments were performed with EpCAMmoderate A549 and EpCAMlow H1299 cells using the CellMag™ and Parsortix® PR1 in-cassette staining. The recovery rate of CellMag™ significantly reduced to 35 ± 14% with A549 cells and 1 ± 1% with H1299 cells. However, the Parsortix® PR1 in-cassette staining showed cell phenotype-independent and consistent recovery rates among all lung cancer cell lines: H1975 (49 ± 2%), A549 (47 ± 10%), and H1299 (52 ± 10%). Furthermore, we demonstrated that the Parsortix® PR1 in-cassette staining method is capable of isolating heterogeneous single CTCs and cell clusters from patient samples. The Parsortix® PR1 in-cassette staining, capable of isolating different phenotypes of CTCs as either single cells or cell clusters with consistent recovery rates, is considered optimal for CTC enrichment for lung cancer, albeit needing further optimization and validation.

3.
J Extracell Vesicles ; 13(2): e12404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326288

RESUMO

Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.


Assuntos
Exossomos , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Exossomos/metabolismo , Transporte Biológico , Biomarcadores/metabolismo , Fenótipo
4.
J Extracell Biol ; 2(10): e115, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38939735

RESUMO

Cell culture-conditioned medium (CCM) is a valuable source of extracellular vesicles (EVs) for basic scientific, therapeutic and diagnostic applications. Cell culturing parameters affect the biochemical composition, release and possibly the function of CCM-derived EVs (CCM-EV). The CCM-EV task force of the Rigor and Standardization Subcommittee of the International Society for Extracellular Vesicles aims to identify relevant cell culturing parameters, describe their effects based on current knowledge, recommend reporting parameters and identify outstanding questions. While some recommendations are valid for all cell types, cell-specific recommendations may need to be established for non-mammalian sources, such as bacteria, yeast and plant cells. Current progress towards these goals is summarized in this perspective paper, along with a checklist to facilitate transparent reporting of cell culturing parameters to improve the reproducibility of CCM-EV research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA