Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 55(11): 1663-72, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26836402

RESUMO

Histone modification plays a major role in regulating gene transcription and ensuring the healthy development of an organism. Numerous studies have suggested that histones are dynamically modified during developmental events to control gene expression levels in a temporal and spatial manner. However, the study of histone acetylation dynamics using currently available techniques is hindered by the difficulty of simultaneously measuring acetylation of the numerous potential sites of modification present in histones. Here, we present a methodology that allows us to combine mass spectrometry-based histone analysis with Drosophila developmental genetics. Using this system, we characterized histone acetylation patterns during multiple developmental stages of the fly. Additionally, we utilized this analysis to characterize how treatments with pharmacological agents or environmental changes such as γ-irradiation altered histone acetylation patterns. Strikingly, γ-irradiation dramatically increased the level of acetylation at H3K18, a site linked to DNA repair via nonhomologous end joining. In mutant fly strains deficient in DNA repair proteins, however, this increase in the level of H3K18 acetylation was lost. These results demonstrate the efficacy of our combined mass spectrometry system with a Drosophila model system and provide interesting insight into the changes in histone acetylation during development, as well as the effects of both pharmacological and environmental agents on global histone acetylation.


Assuntos
Reparo do DNA , Proteínas de Drosophila/metabolismo , Raios gama , Histonas/metabolismo , Transcrição Gênica/efeitos da radiação , Acetilação , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Histonas/genética , Mutação
2.
Sci Rep ; 11(1): 11851, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088913

RESUMO

The Mediterranean diet, considered one of the healthiest in the world, is characterized in part by the major source of its fat, which is extra virgin olive oil (EVOO). Among the health benefits of consuming EVOOs is the presence of phenolic compounds, which have been shown to lower the incidence of coronary heart disease and are suspected of providing many other health benefits. These phenolic compounds also contribute to the flavor of EVOO, adding both specific pungency in the throat and bitter notes that are valued by connoisseurs but reported to be unpleasant by naïve consumers. Here, we demonstrate that some food-derived proteins, specifically from egg yolks and whey, when added to pungent and bitter EVOOs, reduce or even eliminate both the throat pungency and bitterness. The sensory loss is proportional to the food protein additions. Thus, when used in various foods recipes (e.g. mayonnaise), pungent and bitter EVOOs may lose their pungent and bitter characteristics thereby rendering them more palatable to many consumers. This sensory reduction might also indicate interaction between the proteins and the phenolic compounds, which, if confirmed, would raise the question of whether the bioactivities of EVOO phenolics remain unchanged when consumed with and without protein-containing foods.


Assuntos
Olea/química , Azeite de Oliva/química , Proteínas/química , Paladar , Adulto , Anti-Inflamatórios , Dieta Mediterrânea , Proteínas Alimentares/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Químicos , Neurociências , Fenol/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA