Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Mol Cell ; 79(4): 645-659.e9, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32692974

RESUMO

Stress granules (SGs) are membrane-less ribonucleoprotein condensates that form in response to various stress stimuli via phase separation. SGs act as a protective mechanism to cope with acute stress, but persistent SGs have cytotoxic effects that are associated with several age-related diseases. Here, we demonstrate that the testis-specific protein, MAGE-B2, increases cellular stress tolerance by suppressing SG formation through translational inhibition of the key SG nucleator G3BP. MAGE-B2 reduces G3BP protein levels below the critical concentration for phase separation and suppresses SG initiation. Knockout of the MAGE-B2 mouse ortholog or overexpression of G3BP1 confers hypersensitivity of the male germline to heat stress in vivo. Thus, MAGE-B2 provides cytoprotection to maintain mammalian spermatogenesis, a highly thermosensitive process that must be preserved throughout reproductive life. These results demonstrate a mechanism that allows for tissue-specific resistance against stress and could aid in the development of male fertility therapies.


Assuntos
Grânulos Citoplasmáticos/genética , DNA Helicases/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Biossíntese de Proteínas , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Estresse Fisiológico/genética , Regiões 5' não Traduzidas , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/patologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Helicases/metabolismo , Feminino , Células HCT116 , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Espermatogônias/citologia , Espermatogônias/patologia , Testículo/citologia , Testículo/metabolismo
2.
Development ; 148(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33929507

RESUMO

The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, the importance of this has not been defined. Here, using mouse models with conditional knockout of the master cell cycle regulator Rb1 to disrupt normal timing of the quiescence period, we found that failure to initiate mitotic arrest during fetal development leads to prospermatogonial apoptosis and germline ablation. Outcomes of single-cell RNA-sequencing analysis indicate that oxidative phosphorylation activity and inhibition of meiotic initiation are disrupted in prospermatogonia that fail to enter quiescence on a normal timeline. Taken together, these findings suggest that key layers of programming are laid down during the quiescent period in prospermatogonia to ensure proper fate specification and fitness in postnatal life.


Assuntos
Divisão Celular/fisiologia , Espermatogônias/citologia , Espermatogônias/crescimento & desenvolvimento , Células-Tronco/citologia , Animais , Apoptose , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Knockout , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Proteínas de Ligação a Retinoblastoma/genética , Análise de Sequência de RNA , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Espermatozoides , Transcriptoma
3.
Development ; 147(8)2020 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-32188631

RESUMO

Continual spermatogenesis relies on the actions of an undifferentiated spermatogonial population that is composed of stem cells and progenitors. Here, using mouse models, we explored the role of RNA-binding proteins (RBPs) in regulation of the biological activities of this population. Proteins bound to polyadenylated RNAs in primary cultures of undifferentiated spermatogonia were captured with oligo (dT)-conjugated beads after UV-crosslinking and profiled by proteomics (termed mRBPome capture), yielding a putative repertoire of 473 RBPs. From this database, the RBP TRIM71 was identified and found to be expressed by stem and progenitor spermatogonia in prepubertal and adult mouse testes. Tissue-specific deletion of TRIM71 in the male germline led to reduction of the undifferentiated spermatogonial population and a block in transition to the differentiating state. Collectively, these findings demonstrate a key role of the RBP system in regulation of the spermatogenic lineage and may provide clues about the influence of RBPs on the biology of progenitor cell populations in other lineages.


Assuntos
Proteoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Espermatogônias/citologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Testículo/citologia , Regulação para Cima/genética
4.
Proc Natl Acad Sci U S A ; 117(39): 24195-24204, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929012

RESUMO

Spermatogonial stem cell transplantation (SSCT) is an experimental technique for transfer of germline between donor and recipient males that could be used as a tool for biomedical research, preservation of endangered species, and dissemination of desirable genetics in food animal populations. To fully realize these potentials, recipient males must be devoid of endogenous germline but possess normal testicular architecture and somatic cell function capable of supporting allogeneic donor stem cell engraftment and regeneration of spermatogenesis. Here we show that male mice, pigs, goats, and cattle harboring knockout alleles of the NANOS2 gene generated by CRISPR-Cas9 editing have testes that are germline ablated but otherwise structurally normal. In adult pigs and goats, SSCT with allogeneic donor stem cells led to sustained donor-derived spermatogenesis. With prepubertal mice, allogeneic SSCT resulted in attainment of natural fertility. Collectively, these advancements represent a major step toward realizing the enormous potential of surrogate sires as a tool for dissemination and regeneration of germplasm in all mammalian species.


Assuntos
Células-Tronco Germinativas Adultas/transplante , Proteínas de Ligação a RNA/fisiologia , Espermatogênese , Animais , Bovinos , Feminino , Cabras , Masculino , Camundongos , Camundongos Knockout , Suínos , Testículo/anatomia & histologia , Testículo/fisiologia , Transplante Homólogo
5.
Genes Dev ; 29(21): 2312-24, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26545815

RESUMO

Postnatal spermatogonial stem cells (SSCs) progress through proliferative and developmental stages to populate the testicular niche prior to productive spermatogenesis. To better understand, we conducted extensive genomic profiling at multiple postnatal stages on subpopulations enriched for particular markers (THY1, KIT, OCT4, ID4, or GFRa1). Overall, our profiles suggest three broad populations of spermatogonia in juveniles: (1) epithelial-like spermatogonia (THY1(+); high OCT4, ID4, and GFRa1), (2) more abundant mesenchymal-like spermatogonia (THY1(+); moderate OCT4 and ID4; high mesenchymal markers), and (3) (in older juveniles) abundant spermatogonia committing to gametogenesis (high KIT(+)). Epithelial-like spermatogonia displayed the expected imprinting patterns, but, surprisingly, mesenchymal-like spermatogonia lacked imprinting specifically at paternally imprinted loci but fully restored imprinting prior to puberty. Furthermore, mesenchymal-like spermatogonia also displayed developmentally linked DNA demethylation at meiotic genes and also at certain monoallelic neural genes (e.g., protocadherins and olfactory receptors). We also reveal novel candidate receptor-ligand networks involving SSCs and the developing niche. Taken together, neonates/juveniles contain heterogeneous epithelial-like or mesenchymal-like spermatogonial populations, with the latter displaying extensive DNA methylation/chromatin dynamics. We speculate that this plasticity helps SSCs proliferate and migrate within the developing seminiferous tubule, with proper niche interaction and membrane attachment reverting mesenchymal-like spermatogonial subtype cells back to an epithelial-like state with normal imprinting profiles.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica/genética , Fatores de Transcrição/genética , Animais , Caderinas/genética , Células Cultivadas , Metilação de DNA , Epigenômica , Gametogênese/genética , Perfilação da Expressão Gênica , Masculino , Camundongos , Receptores Odorantes/genética , Transdução de Sinais/genética , Antígenos Thy-1/metabolismo
6.
Biol Reprod ; 106(6): 1175-1190, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35244684

RESUMO

Spermatogenic regeneration is key for male fertility and relies on activities of an undifferentiated spermatogonial population. Here, a high-throughput approach with primary cultures of mouse spermatogonia was devised to rapidly predict alterations in functional capacity. Combining the platform with a large-scale RNAi screen of transcription factors, we generated a repository of new information from which pathway analysis was able to predict candidate molecular networks regulating regenerative functions. Extending from this database, the SRCAP-CREBBP/EP300 (Snf2-related CREBBP activator protein-CREB binding protein/E1A binding protein P300) complex was found to mediate differential levels of histone acetylation between stem cell and progenitor spermatogonia to influence expression of key self-renewal genes including the previously undescribed testis-specific transcription factor ZSCAN2 (zinc finger and SCAN domain containing 2). Single cell RNA sequencing analysis revealed that ZSCAN2 deficiency alters key cellular processes in undifferentiated spermatogonia such as translation, chromatin modification, and ubiquitination. In Zscan2 knockout mice, while spermatogenesis was moderately impacted during steady state, regeneration after cytotoxic insult was significantly impaired. Altogether, these findings have validated the utility of our high-throughput screening approach and have generated a transcription factor database that can be utilized for uncovering novel mechanisms governing spermatogonial functions.


Assuntos
Espermatogênese , Espermatogônias , Animais , Diferenciação Celular , Masculino , Camundongos , Espermatogênese/fisiologia , Células-Tronco , Testículo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Genes Dev ; 28(12): 1351-62, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24939937

RESUMO

The maintenance of cycling cell lineages relies on undifferentiated subpopulations consisting of stem and progenitor pools. Features that delineate these cell types are undefined for many lineages, including spermatogenesis, which is supported by an undifferentiated spermatogonial population. Here, we generated a transgenic mouse line in which spermatogonial stem cells are marked by expression of an inhibitor of differentiation 4 (Id4)-green fluorescent protein (Gfp) transgene. We found that Id4-Gfp(+) cells exist primarily as a subset of the type A(single) pool, and their frequency is greatest in neonatal development and then decreases in proportion during establishment of the spermatogenic lineage, eventually comprising ∼ 2% of the undifferentiated spermatogonial population in adulthood. RNA sequencing analysis revealed that expression of 11 and 25 genes is unique for the Id4-Gfp(+)/stem cell and Id4-Gfp(-)/progenitor fractions, respectively. Collectively, these findings provide the first definitive evidence that stem cells exist as a rare subset of the A(single) pool and reveal transcriptome features distinguishing stem cell and progenitor states within the mammalian male germline.


Assuntos
Células Germinativas/citologia , Proteínas Inibidoras de Diferenciação/metabolismo , Células-Tronco/citologia , Testículo/citologia , Animais , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Masculino , Camundongos , Camundongos Transgênicos , Espermatogênese/genética , Espermatogônias/metabolismo , Células-Tronco/metabolismo , Testículo/metabolismo , Transcriptoma
8.
Development ; 144(4): 624-634, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087628

RESUMO

Spermatogenesis is a classic model of cycling cell lineages that depend on a balance between stem cell self-renewal for continuity and the formation of progenitors as the initial step in the production of differentiated cells. The mechanisms that guide the continuum of spermatogonial stem cell (SSC) to progenitor spermatogonial transition and precise identifiers of subtypes in the process are undefined. Here we used an Id4-eGfp reporter mouse to discover that EGFP intensity is predictive of the subsets, with the ID4-EGFPBright population being mostly, if not purely, SSCs, whereas the ID4-EGFPDim population is in transition to the progenitor state. These subsets are also distinguishable by transcriptome signatures. Moreover, using a conditional overexpression mouse model, we found that transition from the stem cell to the immediate progenitor state requires downregulation of Id4 coincident with a major change in the transcriptome. Collectively, our results demonstrate that the level of ID4 is predictive of stem cell or progenitor capacity in spermatogonia and dictates the interface of transition between the different functional states.


Assuntos
Regulação da Expressão Gênica , Proteínas Inibidoras de Diferenciação/fisiologia , Espermatogênese , Espermatogônias/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Autorrenovação Celular , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Testículo/metabolismo , Transcriptoma , Transgenes
9.
Vet Surg ; 49 Suppl 1: O28-O37, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31222769

RESUMO

OBJECTIVE: To evaluate the feasibility of stem cell isolation from falciform fat harvested via laparoscopic morcellation. STUDY DESIGN: Pilot study. ANIMALS: Eleven client-owned dogs. METHODS: Falciform was harvested traditionally via laparotomy and laparoscopically via tissue morcellation. Harvested tissue was processed with a commercially available adipose tissue dissociation kit to obtain a stromal vascular fraction (SVF). Cells were subsequently labeled for CD90, CD45, and CD44 cell surface antigens by using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting flow cytometry. CD90+ cells were quantitated, and their viability was assessed with a hemocytometer and a trypan blue exclusion test of cell viability. RESULTS: No perioperative complications occurred in dogs undergoing laparoscopic morcellation. Laparoscopically and traditionally harvested samples yielded an average of 0.39 (±0.1) × 106 and 0.33 (±0.1) × 106 CD90+ cells, respectively, per 10 million SVF cells. CD90+ cell viability after MACS was 89% (±11%) for morcellated and 86% (±7%) for traditionally harvested samples. Neither CD90+ cell quantity nor viability was different between samples obtained via traditional laparotomy vs laparoscopic morcellation (P = .38 and P = .63, respectively). Populations of CD90+ cells isolated with each harvest technique had similar CD44 and CD45 expression profiles. CONCLUSION: Viable populations of CD90+ cells with similar CD44/CD45 expression profiles were isolated from laparoscopically morcellated and traditionally harvested falciform tissue. No appreciable morbidity was associated with laparoscopic falciform morcellation. CLINICAL SIGNIFICANCE: Laparoscopic morcellation is a safe and effective minimally invasive approach to falciform tissue harvest for adipose-derived mesenchymal stem cell isolation.


Assuntos
Tecido Adiposo/citologia , Cães/anatomia & histologia , Laparoscopia/veterinária , Células-Tronco Mesenquimais/citologia , Coleta de Tecidos e Órgãos/veterinária , Animais , Células Cultivadas , Cães/cirurgia , Citometria de Fluxo , Humanos , Laparoscopia/métodos , Células-Tronco Mesenquimais/fisiologia , Morcelação , Projetos Piloto , Coleta de Tecidos e Órgãos/métodos
10.
Physiol Rev ; 92(2): 577-95, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22535892

RESUMO

This review addresses current understanding of the germline stem cell niche unit in mammalian testes. Spermatogenesis is a classic model of tissue-specific stem cell function relying on self-renewal and differentiation of spermatogonial stem cells (SSCs). These fate decisions are influenced by a niche microenvironment composed of a growth factor milieu that is provided by several testis somatic support cell populations. Investigations over the last two decades have identified key determinants of the SSC niche including cytokines that regulate SSC functions and support cells providing these factors, adhesion molecules that influence SSC homing, and developmental heterogeneity of the niche during postnatal aging. Emerging evidence suggests that Sertoli cells are a key support cell population influencing the formation and function of niches by secreting soluble factors and possibly orchestrating contributions of other support cells. Investigations with mice have shown that niche influence on SSC proliferation differs during early postnatal development and adulthood. Moreover, there is mounting evidence of an age-related decline in niche function, which is likely influenced by systemic factors. Defining the attributes of stem cell niches is key to developing methods to utilize these cells for regenerative medicine. The SSC population and associated niche comprise a valuable model system for study that provides fundamental knowledge about the biology of tissue-specific stem cells and their capacity to sustain homeostasis of regenerating tissue lineages. While the stem cell is essential for maintenance of all self-renewing tissues and has received considerable attention, the role of niche cells is at least as important and may prove to be more receptive to modification in regenerative medicine.


Assuntos
Espermatogênese , Espermatozoides/crescimento & desenvolvimento , Nicho de Células-Tronco , Células-Tronco/fisiologia , Testículo/crescimento & desenvolvimento , Envelhecimento , Animais , Proliferação de Células , Citocinas/fisiologia , Humanos , Masculino , Camundongos , Ratos , Células de Sertoli , Espermatozoides/citologia , Testículo/citologia
11.
Biol Reprod ; 101(1): 177-187, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31095680

RESUMO

Gene editing technologies, such as CRISPR-Cas9, have important applications in mammalian embryos for generating novel animal models in biomedical research and lines of livestock with enhanced production traits. However, the lack of methods for efficient introduction of gene editing reagents into zygotes of various species and the need for surgical embryo transfer in mice have been technical barriers of widespread use. Here, we described methodologies that overcome these limitations for embryos of mice, cattle, and pigs. Using mutation of the Nanos2 gene as a readout, we refined electroporation parameters with preassembled sgRNA-Cas9 RNPs for zygotes of all three species without the need for zona pellucida dissolution that led to high-efficiency INDEL edits. In addition, we optimized culture conditions to support maturation from zygote to the multicellular stage for all three species that generates embryos ready for transfer to produce gene-edited animals. Moreover, for mice, we devised a nonsurgical embryo transfer method that yields offspring at an efficiency comparable to conventional surgical approaches. Collectively, outcomes of these studies provide simplified pipelines for CRISPR-Cas9-based gene editing that are applicable in a variety of mammalian species.


Assuntos
Sistemas CRISPR-Cas/genética , Clonagem de Organismos/métodos , Eletroporação/métodos , Embrião de Mamíferos/citologia , Edição de Genes/métodos , Engenharia Genética/métodos , Animais , Bovinos/embriologia , Células Cultivadas , Clonagem de Organismos/veterinária , Eletroporação/veterinária , Técnicas de Cultura Embrionária/métodos , Técnicas de Cultura Embrionária/veterinária , Transferência Embrionária/métodos , Transferência Embrionária/veterinária , Embrião de Mamíferos/metabolismo , Feminino , Edição de Genes/veterinária , Técnicas de Transferência de Genes/veterinária , Engenharia Genética/veterinária , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas de Ligação a RNA/genética , Suínos/embriologia
12.
Dev Biol ; 432(2): 229-236, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29037932

RESUMO

The onset of spermatogenesis occurs in response to retinoic acid (RA), the active metabolite of vitamin A. However, whether RA plays any role during establishment of the spermatogonial stem cell (SSC) pool is unknown. Because designation of the SSC population and the onset of RA signaling in the testis that induces differentiation have similar timing, this study asked whether RA influenced SSC establishment. Whole mount immunofluorescence and flow cytometric analysis using the Id4-eGfp transgenic reporter mouse line revealed an enrichment for ID4-EGFP+ cells within the testis following inhibition of RA synthesis by WIN 18,446 treatment. Transplantation analyses confirmed a significant increase in the number of SSCs in testes from RA-deficient animals. Conversely, no difference in the ID4-EGFP+ population or change in SSC number were detected following exposure to an excess of RA. Collectively, reduced RA altered the number of SSCs present in the neonatal testis but precocious RA exposure in the neonatal testis did not, suggesting that RA deficiency causes a greater proportion of progenitor undifferentiated spermatogonia to retain their SSC state past the age when the pool is thought to be determined.


Assuntos
Espermatogênese/fisiologia , Tretinoína/metabolismo , Células-Tronco Germinativas Adultas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais/efeitos dos fármacos , Espermatogênese/genética , Espermatogônias/citologia , Testículo/metabolismo
13.
PLoS Genet ; 11(7): e1005355, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26176933

RESUMO

The origin of most ovarian tumors is undefined. Here, we report development of a novel mouse model in which conditional inactivation of the tumor suppressor gene Rb1 in oocytes leads to the formation of ovarian teratomas (OTs). While parthenogenetically activated ooctyes are a known source of OT in some mutant mouse models, enhanced parthenogenetic propensity in vitro was not observed for Rb1-deficient oocytes. Further analyses revealed that follicle recruitment and growth is disrupted in ovaries of mice with conditional inactivation of Rb1, leading to abnormal accumulation of secondary/preantral follicles. These findings underpin the concept that miscues between the germ cell and somatic compartments cause premature oocyte activation and the formation of OTs. Furthermore, these results suggest that defects in folliculogenesis and a permissive genetic background are sufficient to drive OT development, even in the absence of enhanced parthenogenetic activation. Thus, we have discovered a novel role of Rb1 in regulating the entry of primordial oocytes into the pool of growing follicles and signaling between the oocyte and granulosa cells during the protracted process of oocyte growth. Our findings, coupled with data from studies of other OT models, suggest that defects in the coordinated regulation between growth of the oocyte and somatic components in follicles are an underlying cause of OT formation.


Assuntos
Oócitos/crescimento & desenvolvimento , Oogênese , Folículo Ovariano/crescimento & desenvolvimento , Proteína do Retinoblastoma/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Meiose/genética , Camundongos , Oócitos/patologia , Folículo Ovariano/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteína do Retinoblastoma/biossíntese , Transdução de Sinais , Teratoma/genética , Teratoma/patologia
14.
PLoS Genet ; 11(1): e1004949, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25615633

RESUMO

Bisphenol A (BPA) and other endocrine disrupting chemicals have been reported to induce negative effects on a wide range of physiological processes, including reproduction. In the female, BPA exposure increases meiotic errors, resulting in the production of chromosomally abnormal eggs. Although numerous studies have reported that estrogenic exposures negatively impact spermatogenesis, a direct link between exposures and meiotic errors in males has not been evaluated. To test the effect of estrogenic chemicals on meiotic chromosome dynamics, we exposed male mice to either BPA or to the strong synthetic estrogen, ethinyl estradiol during neonatal development when the first cells initiate meiosis. Although chromosome pairing and synapsis were unperturbed, exposed outbred CD-1 and inbred C3H/HeJ males had significantly reduced levels of crossovers, or meiotic recombination (as defined by the number of MLH1 foci in pachytene cells) by comparison with placebo. Unexpectedly, the effect was not limited to cells exposed at the time of meiotic entry but was evident in all subsequent waves of meiosis. To determine if the meiotic effects induced by estrogen result from changes to the soma or germline of the testis, we transplanted spermatogonial stem cells from exposed males into the testes of unexposed males. Reduced recombination was evident in meiocytes derived from colonies of transplanted cells. Taken together, our results suggest that brief exogenous estrogenic exposure causes subtle changes to the stem cell pool that result in permanent alterations in spermatogenesis (i.e., reduced recombination in descendent meiocytes) in the adult male.


Assuntos
Troca Genética/efeitos dos fármacos , Recombinação Genética/efeitos dos fármacos , Espermatogônias/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Compostos Benzidrílicos/administração & dosagem , Troca Genética/genética , Estrogênios/administração & dosagem , Feminino , Células Germinativas/citologia , Masculino , Meiose/genética , Fenóis/administração & dosagem , Espermatócitos/citologia , Espermatócitos/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Espermatogônias/crescimento & desenvolvimento , Espermatozoides/efeitos dos fármacos , Espermatozoides/crescimento & desenvolvimento , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Testículo/crescimento & desenvolvimento
15.
PLoS Genet ; 11(10): e1005569, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26496357

RESUMO

Skeletal dysplasias are a common, genetically heterogeneous cause of short stature that can result from disruptions in many cellular processes. We report the identification of the lesion responsible for skeletal dysplasia and male infertility in the spontaneous, recessive mouse mutant chagun. We determined that Poc1a, encoding protein of the centriole 1a, is disrupted by the insertion of a processed Cenpw cDNA, which is flanked by target site duplications, suggestive of a LINE-1 retrotransposon-mediated event. Mutant fibroblasts have impaired cilia formation and multipolar spindles. Male infertility is caused by defective spermatogenesis early in meiosis and progressive germ cell loss. Spermatogonial stem cell transplantation studies revealed that Poc1a is essential for normal function of both Sertoli cells and germ cells. The proliferative zone of the growth plate is small and disorganized because chondrocytes fail to re-align after cell division and undergo increased apoptosis. Poc1a and several other genes associated with centrosome function can affect the skeleton and lead to skeletal dysplasias and primordial dwarfisms. This mouse mutant reveals how centrosome dysfunction contributes to defects in skeletal growth and male infertility.


Assuntos
Proteínas do Citoesqueleto/genética , Nanismo/genética , Infertilidade Masculina/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Espermatogênese/genética , Animais , Proteínas de Ciclo Celular , Centríolos/genética , Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/genética , Nanismo/patologia , Humanos , Infertilidade Masculina/patologia , Masculino , Meiose/genética , Camundongos , Proteínas/genética , Proteínas/metabolismo , Células de Sertoli/metabolismo , Espermatogônias/metabolismo
16.
Reproduction ; 154(2): R55-R64, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28624768

RESUMO

Spermatogonial stem cells (SSCs) and progenitor spermatogonia encompass the undifferentiated spermatogonial pool in mammalian testes. In rodents, this population is comprised of Asingle, Apaired and chains of 4-16 Aaligned spermatogonia. Although traditional models propose that the entire Asingle pool represents SSCs, and formation of an Apaired syncytium symbolizes irreversible entry to a progenitor state destined for differentiation; recent models have emerged that suggest that the Asingle pool is heterogeneous, and Apaired/Aaligned can fragment to produce new SSCs. In this review, we explore evidence from the literature for these differing models representing SSC dynamics, including the traditional 'Asingle' and more recently formed 'fragmentation' models. Further, based on findings using a fluorescent reporter transgene (eGfp) that reflects expression of the SSC-specific transcription factor 'inhibitor of DNA binding 4' (Id4), we propose a revised version of the traditional model in which SSCs are a subset of the Asingle population; the ID4-eGFP bright cells (SSCultimate). From the SSCultimate pool, other Asingle and Apaired cohorts arise that are ID4-eGFP dim. Although the SSCultimate possess a transcriptome profile that reflects a self-renewing state, the transcriptome of the ID4-eGFP dim population resembles that of cells in transition (SSCtransitory) to a progenitor state. Accordingly, at the next mitotic division, these SSCtransitory are likely to join the progenitor pool and have lost stem cell capacity. This model supports the concept of a linear relationship between spermatogonial chain length and propensity for differentiation, while leaving open the possibility that the SSCtransitory (some Asingle and potentially some Apaired spermatogonia), may contribute to the self-renewing pool rather than transition to a progenitor state in response to perturbations of steady-state conditions.


Assuntos
Células-Tronco Germinativas Adultas/fisiologia , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Autorrenovação Celular , Modelos Biológicos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Cinética , Modelos Lineares , Masculino , Camundongos Transgênicos , Fenótipo , Transcriptoma , Transgenes
17.
Reprod Fertil Dev ; 30(1): 44-49, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29539301

RESUMO

At the foundation of spermatogenesis are the actions of spermatogonial stem cells (SSCs), and a remarkable feature of these cells is the capacity to regenerate spermatogenesis following transplantation into testes of a recipient male that lacks endogenous germline. This ability could be exploited in livestock production as a breeding tool to enhance genetic gain. A key element to success is derivation of culture conditions that support proliferation of SSCs to provide sufficient numbers of cells for transfer into multiple recipient males. Using methodology devised for rodent cells as a foundation, advances in culturing cattle SSCs have occurred over the past few years and efforts are underway to extend this capability to pig cells. Another critical component to SSC transplantation is generation of males with germline ablation but intact somatic support cell function that can serve as surrogate sires for donor-derived spermatogenesis in a natural mating scheme. Recent advances in pigs using gene editing technologies have demonstrated that knockout of a key male germ cell-specific gene, namely NANOS2, leads to male-specific germline ablation but otherwise normal physiology, including intact seminiferous tubules. Together with recent advances in culturing spermatogonia of higher-order mammals, the now efficient means of producing germline-ablated recipient males have brought the application of SSC transplantation in livestock as a production tool closer to reality than ever before.


Assuntos
Células-Tronco Germinativas Adultas/transplante , Gado , Espermatogônias/transplante , Transplante de Células-Tronco/tendências , Transplante de Células-Tronco/veterinária , Células-Tronco Germinativas Adultas/citologia , Animais , Bovinos , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/tendências , Técnicas de Cultura de Células/veterinária , Masculino , Camundongos , Espermatogônias/citologia , Transplante de Células-Tronco/métodos , Suínos
18.
Development ; 140(2): 280-90, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23221369

RESUMO

Continuity of cycling cell lineages relies on the activities of undifferentiated stem cell-containing subpopulations. Transition to a differentiating state must occur periodically in a fraction of the population to supply mature cells, coincident with maintenance of the undifferentiated state in others to sustain a foundational stem cell pool. At present, molecular mechanisms regulating these activities are poorly defined for most cell lineages. Spermatogenesis is a model process that is supported by an undifferentiated spermatogonial population and transition to a differentiating state involves attained expression of the KIT receptor. We found that impaired function of the X chromosome-clustered microRNAs 221 and 222 (miR-221/222) in mouse undifferentiated spermatogonia induces transition from a KIT(-) to a KIT(+) state and loss of stem cell capacity to regenerate spermatogenesis. Both Kit mRNA and KIT protein abundance are influenced by miR-221/222 function in spermatogonia. Growth factors that promote maintenance of undifferentiated spermatogonia upregulate miR-221/222 expression; whereas exposure to retinoic acid, an inducer of spermatogonial differentiation, downregulates miR-221/222 abundance. Furthermore, undifferentiated spermatogonia overexpressing miR-221/222 are resistant to retinoic acid-induced transition to a KIT(+) state and are incapable of differentiation in vivo. These findings indicate that miR-221/222 plays a crucial role in maintaining the undifferentiated state of mammalian spermatogonia through repression of KIT expression.


Assuntos
Células Germinativas/citologia , MicroRNAs/fisiologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Apoptose , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Citometria de Fluxo/métodos , Humanos , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Cromossomos Sexuais , Espermatogênese , Espermatogônias/patologia , Células-Tronco , Tretinoína/farmacologia
19.
Biol Reprod ; 95(1): 14, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27251094

RESUMO

Continual and robust spermatogenesis relies on the actions of an undifferentiated spermatogonial population that contains stem cells. A remarkable feature of spermatogonial stem cells (SSCs) is the capacity to regenerate spermatogenesis following isolation from a donor testis and transplantation into a permissive recipient testis. This capacity has enormous potential as a tool for enhancing the reproductive capacity of livestock, which can improve production efficiency. Because SSCs are a rare subset of the undifferentiated spermatogonial population, a period of in vitro amplification in number following isolation from donor testicular tissue is essential. Here, we describe methodology for isolation of a cell fraction from prepubertal bull testes that is enriched for undifferentiated spermatogonia and long-term maintenance of the cells in both the feeder cell coculture and the feeder-free format. To achieve this method, we derived bovine fetal fibroblasts (BFF) to serve as feeders for optimizing medium conditions that promote maintenance of bovine undifferentiated spermatogonia for at least 2 mo. In addition, we devised a feeder-free system with BFF-conditioned medium that sustained bovine undifferentiated spermatogonia for at least 1 mo in vitro. The methodologies described could be optimized to provide platforms for exponential expansion of bovine SSCs that will provide the numbers needed for transplantation into recipient testes.


Assuntos
Técnicas de Cultura de Células/métodos , Espermatogênese/fisiologia , Espermatogônias/citologia , Células-Tronco/citologia , Testículo/citologia , Animais , Bovinos , Células Cultivadas , Meios de Cultura , Masculino
20.
Biol Reprod ; 95(6): 117, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733379

RESUMO

Precise separation of spermatogonial stem cells (SSCs) from progenitor spermatogonia that lack stem cell activity and are committed to differentiation remains a challenge. To distinguish between these spermatogonial subtypes, we identified genes that exhibited bimodal mRNA levels at the single-cell level among undifferentiated spermatogonia from Postnatal Day 6 mouse testes, including Tspan8, Epha2, and Pvr, each of which encode cell surface proteins useful for cell selection. Transplantation studies provided definitive evidence that a TSPAN8-high subpopulation is enriched for SSCs. RNA-seq analyses identified genes differentially expressed between TSPAN8-high and -low subpopulations that clustered into multiple biological pathways potentially involved in SSC renewal or differentiation, respectively. Methyl-seq analysis identified hypomethylated domains in the promoters of these genes in both subpopulations that colocalized with peaks of histone modifications defined by ChIP-seq analysis. Taken together, these results demonstrate functional heterogeneity among mouse undifferentiated spermatogonia and point to key biological characteristics that distinguish SSCs from progenitor spermatogonia.


Assuntos
Células-Tronco Germinativas Adultas/citologia , Testículo/citologia , Tetraspaninas/metabolismo , Células-Tronco Germinativas Adultas/metabolismo , Animais , Biomarcadores/metabolismo , Ciclo Celular/fisiologia , Perfilação da Expressão Gênica , Masculino , Camundongos , Receptor EphA2/genética , Receptor EphA2/metabolismo , Espermatogênese , Testículo/metabolismo , Tetraspaninas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA