Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Physiol ; 236(8): 5994-6010, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33481268

RESUMO

Both hydrogen sulfide (H2 S) and mesenchymal stem cells (MSCs) extracted microvesicles (MVs) are potent anti-inflammatory molecules. They play an essential role in lowering the production of tumor necrosis factor-alpha (TNF-α). The latter could strongly stimulate MiR-155 that contributes to neurodegeneration and Alzheimer's disease (AD). miR-155 could repress the expression of inositol 5-phosphatase-1 (SHIP-1) leading eventually to activation of Akt kinase and neurofibrillary development in AD. The current study was conducted to evaluate the role of miR-155 in a rat model of lipopolysaccharide (LPS)-induced AD and to investigate the effect of using MVs and H2 S that were given either separately or combined in regulating pro-inflammatory signaling. Thirty female Wistar albino rats aged 6 months to 1 year were equally divided into five groups; control group, LPS-induced AD group, LPS + MVs group, LPS + NaHS group, and LPS + MVs and NaHS group. The increased miR-155 level was associated with decreased SHIP-1 level and positively correlated with TNF-α. In addition, treatment with MVs and/or NaHS resulted in attenuation of inflammation, decreasing miR-155, pAkt levels, and downregulation of apoptosis along with improvement of the hippocampal and cortical histopathological alterations. LPS enhanced production of malondialdehyde (MDA) and reduced glutathione (GSH) levels indicating oxidative stress-induced neural damage, whereas MVs and NaHS could mitigate oxidative damage and accelerate antioxidant capacity via increasing catalase enzyme. In conclusion, downregulation of TNF-α, miR-155, and pAkt and increased SHIP-1 could improve the neuro-inflammatory state and cognitive function of LPS-induced Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Sulfeto de Hidrogênio/farmacologia , Inflamação/tratamento farmacológico , Células-Tronco Mesenquimais/efeitos dos fármacos , Doença de Alzheimer/patologia , Animais , Micropartículas Derivadas de Células/metabolismo , Feminino , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Malondialdeído/metabolismo , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Sulfetos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA