Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Sci Food Agric ; 104(2): 860-874, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37708393

RESUMO

BACKGROUND: Grapevine red blotch virus (GRBV) is a recently discovered virus and a major concern for the wine industry. Prior research indicated that GRBV delays grape ripening by reducing °Brix and anthocyanin concentrations in grapes from infected vines, resulting in higher ethanol concentrations in wines made from healthy fruit compared to diseased vines, which have an impact on sensory properties. In this study, infected fruit (Vitis vinifera L. Merlot) was sequentially harvested (in 2016 and 2017) and chaptalized (in 2017) to ameliorate the impact of GRBV on grape and final wine composition. RESULTS: Chemical parameters including phenolic and volatile profiles of grapes and their subsequent wines were measured. Sensory properties were determined by descriptive analyses. Results demonstrated that GRBV decreased sugar accumulation and anthocyanin synthesis in grapes. Wines from GRBV grapes harvested at later ripening stage produced wines that were more similar chemically and sensorially to wines made from healthy fruit than to wines made from GRBV fruit harvested earlier. CONCLUSION: A longer hang time of GRBV grapes is a potential strategy to mitigate the impacts of GRBV. However, chaptalization of diseased fruit must was inefficient at increasing similarities to wines made from healthy fruit. © 2023 Society of Chemical Industry.


Assuntos
Geminiviridae , Vitis , Vinho , Vitis/química , Antocianinas/análise , Estações do Ano , Vinho/análise , Fenóis/análise , Frutas/química
2.
J Sci Food Agric ; 103(7): 3457-3467, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36727418

RESUMO

BACKGROUND: Grapevine red blotch virus (GRBV) is the causal agent of grapevine red blotch disease and is known to delay grape ripening. However, grape cell-wall modifications during GRBV infection are largely unknown, even though the cell wall plays a large role in pathogenicity, viral interactions with host plants, and phenolic extractability during winemaking. Understanding the impact of GRBV infection on cell-wall metabolism is important for the development of potential mitigations strategies. In this study, high-throughput transcriptome sequencing was conducted on Vitis vinifera L. 'Merlot' grapes during ripening. The cell-wall composition, phenolic content, and phenolic extractability at two different commercial harvest points were also determined. RESULTS: Log fold changes indicated a strong induction in diseased grapes at harvest of several transcripts involved in cell-wall solubilization and degradation. However, these observations did not translate to changes in cell-wall composition at either harvest point in diseased grapes, potentially suggesting post-transcriptional regulation. Moderate induction of pectin methylesterase inhibitor transcripts and transcripts associated with pathogenesis-related proteins coincided with increases in pectin and soluble proteins in cell walls of diseased grapes at harvest. Both pectin and pathogenesis-related proteins are known to retain phenolic compounds during winemaking. CONCLUSION: Our study corroborates this finding when the percentage extractability of flavonols in wines was significantly lower when made from GRBV-infected fruit. These results suggest GRBV alters the grape cell walls, consequently decreasing phenolic extraction during winemaking. © 2023 Society of Chemical Industry.


Assuntos
Geminiviridae , Vitis , Vinho , Vitis/química , Doenças das Plantas , Vinho/análise , Parede Celular/química , Frutas/química , Fenóis/análise , Geminiviridae/fisiologia , Pectinas/análise
3.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362035

RESUMO

Grapevine red blotch virus (GRBV) is a recently identified virus. Previous research indicates primarily a substantial impact on berry ripening in all varieties studied. The current study analyzed grapes' primary and secondary metabolism across grapevine genotypes and seasons to reveal both conserved and variable impacts to GRBV infection. Vitis vinifera cv. Cabernet Sauvignon (CS) grapevines grafted on two different rootstocks (110R and 420A) were analyzed in 2016 and 2017. Metabolite profiling revealed a considerable impact on amino acid and malate acid levels, volatile aroma compounds derived from the lipoxygenase pathway, and anthocyanins synthesized in the phenylpropanoid pathway. Conserved transcriptional responses to GRBV showed induction of auxin-mediated pathways and photosynthesis with inhibition of transcription and translation processes mainly at harvest. There was an induction of plant-pathogen interactions at pre-veraison, for all genotypes and seasons, except for CS 110R in 2017. Lastly, differential co-expression analysis revealed a transcriptional shift from metabolic synthesis and energy metabolism to transcription and translation processes associated with a virus-induced gene silencing transcript. This plant-derived defense response transcript was only significantly upregulated at veraison for all genotypes and seasons, suggesting a phenological association with disease expression and plant immune responses.


Assuntos
Geminiviridae , Viroses , Vitis , Vitis/metabolismo , Antocianinas/metabolismo , Geminiviridae/metabolismo , Frutas/metabolismo , Viroses/metabolismo
4.
Molecules ; 27(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35268834

RESUMO

There is an increase in the levels of volatile phenols in wine made with smoke-impacted grapes. These compounds are present in wood smoke resulting from the pyrolysis (thermal decomposition) of lignin and at high levels give overpowering smoky and ashy characters to a wine. This research aimed to compare all the suggested wine mitigation strategies that evolved from prior research using smoke-impacted grapes under identical winemaking conditions except for the parameter under investigation. Cabernet Sauvignon grapes were received from three areas with varying amounts of smoke exposure in Northern California. Gas chromatography combined with mass spectrometry (GC-MS) and descriptive analyses were performed to correlate the volatile phenol composition to smoke taint characteristics. The winemaking variables investigated were the use of different fermentation yeasts, oak additions, and fermentation temperatures. Among other attributes, smokiness and ashy aftertaste were significantly different among the wines, showing a clear difference between the wines made from smoke-impacted fruit and the control wines made from non-impacted fruit. Findings indicate that mitigation strategies during red wine fermentation have a limited impact on the extraction of smoke-taint markers and the expression of smoke-taint sensory characteristics.


Assuntos
Vinho
5.
Molecules ; 27(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956842

RESUMO

Vineyard exposure to wildfire smoke can taint grapes and wine. To understand the impact of this taint, it is imperative that the analytical methods used are accurate and precise. This study compared the variance across nine commercial and research laboratories following quantitative analysis of the same set of smoke-tainted wines. In parallel, correlations between the interlaboratory consensus values for smoke-taint markers and sensory analyses of the same smoke-tainted wines were evaluated. For free guaiacol, the mean accuracy was 94 ± 11% in model wine, while the free cresols and 4-methylguaiacol showed a negative bias and/or decreased precision relative to guaiacol. Similar trends were observed in smoke-tainted wines, with the cresols and glycosidically bound markers demonstrating high variance. Collectively, the interlaboratory results show that data from a single laboratory can be used quantitatively to understand smoke-taint. Results from different laboratories, however, should not be directly compared due to the high variance between study participants. Correlations between consensus compositional data and sensory evaluations suggest the risk of perceivable smoke-taint can be predicted from free cresol concentrations, overcoming limitations associated with the occurrence of some volatile phenols, guaiacol in particular, as natural constituents of some grape cultivars and of the oak used for barrel maturation.


Assuntos
Vitis , Compostos Orgânicos Voláteis , Vinho , Consenso , Cresóis/metabolismo , Guaiacol/análise , Humanos , Fenóis/análise , Fumaça/análise , Vitis/metabolismo , Compostos Orgânicos Voláteis/análise , Vinho/análise
6.
Biotechnol Bioeng ; 117(1): 109-116, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31544954

RESUMO

Red wine production begins with a simultaneous fermentation and solid-phase extraction process. Red wine color and mouthfeel is the result of the extraction of phenolics from grape skins and seeds during fermentation, where extraction is a strong function of temperature and ethanol concentration. During fermentation, grape solids form a porous "cap" at the top of the fermentor, resulting in a heterogeneous fermentation system with significant temperature and concentration gradients. In this work, we present a spatial, time-variant reactor engineering model for phenolic extraction during red wine fermentation, incorporating fermentation kinetics, mass transfer, heat transfer, compressible fluid flow, and phenolic extraction kinetics. The temperature and ethanol concentration profiles predicted by this model allow for the calculation of phenolic extraction rates over the course of fermentation. Phenolic extraction predictions were validated against prior experimental data to good agreement and compared to a well-mixed model's predictions to show the utility of a spatial model over well-mixed models.


Assuntos
Engenharia Química/métodos , Modelos Químicos , Fenóis/isolamento & purificação , Vitis/química , Vinho/análise , Fermentação/fisiologia , Fenóis/química
7.
Molecules ; 25(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927698

RESUMO

The quantitative and qualitative impacts of anthocyanins on proanthocyanidin adsorption to grape-derived cell wall material were investigated in fifteen unique systems of varying temperatures, ethanol concentrations, and proanthocyanidin concentrations. Proanthocyanidin solutions were exposed to cell wall material and monitored for changes in concentration over 24 h. Increases in both temperature and ethanol resulted in a larger retention of proanthocyanidins in solution and typically faster adsorption kinetics. Analysis of the solution after exposure to cell wall revealed a significant reduction in the molecular weight of proanthocyanidins present in solution, suggesting that anthocyanins do not alter a previously described mechanism of preferentially binding large molecular weight molecules. Additionally, a reduction in polymeric pigment abundance was noted in most conditions, suggesting rapid formation of polymeric pigment in the model solution and preferential adsorption of the polymeric pigment to cell wall material. Compared to a previous study of proanthocyanidin adsorption in the absence of anthocyanins, a significantly larger percentage of proanthocyanidin material was lost via adsorption-up to 70% of available material. In a winemaking context, this may suggest a preferential loss of polymeric pigment via adsorption to cap cell wall material compared to non-pigmented proanthocyanidins and free anthocyanins.


Assuntos
Antocianinas/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Etanol/farmacologia , Proantocianidinas/metabolismo , Temperatura , Vitis/metabolismo , Adsorção , Antocianinas/química , Parede Celular/química , Etanol/química , Frutas/química , Cinética , Peso Molecular , Pigmentos Biológicos , Proantocianidinas/química , Vitis/química , Vinho/análise
8.
Molecules ; 25(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708105

RESUMO

Grapevine red blotch disease (GRBD) is a recently identified viral disease that affects grapevines. GRBD has been shown to impact grapevine physiology and grape composition by altering specific ripening events. However, no studies have been reported on the impact of GRBD on wine composition and its sensory attributes. This study evaluated the impact of GRBD on wine primary and secondary metabolites, in addition to its sensory properties, when making wines from Cabernet Sauvignon and Merlot grapes during two seasons. Wines made with GRBD-impacted fruit were lower in ethanol content when compared to wines made with grapes from healthy grapevines. This was attributed to the lower total soluble sugar (TSS) levels of diseased grapes due to delayed ripening at harvest. GRBD impacted wine phenolic composition by decreasing anthocyanin concentrations and increasing flavonol concentrations in some instances. Additionally, proanthocyanidin concentrations were also consistently higher in GRBD wines compared to wines made from healthy fruit. Descriptive analysis demonstrated that GRBD can impact wine style by altering aroma, flavor, and mouthfeel attributes. However, the extent of GRBD impact on wine composition and sensory properties were site and season dependent.


Assuntos
Aromatizantes/química , Flexiviridae/metabolismo , Odorantes/análise , Doenças das Plantas/microbiologia , Vitis/microbiologia , Vinho/análise , Antocianinas/química , Antocianinas/metabolismo , Cor , Etanol/química , Etanol/metabolismo , Flavonóis/química , Frutas/química , Humanos , Fenóis/química , Proantocianidinas/química , Proantocianidinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Metabolismo Secundário , Açúcares/química , Açúcares/metabolismo , Paladar
9.
J Sci Food Agric ; 100(4): 1436-1447, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31742703

RESUMO

BACKGROUND: Grapevine red blotch virus (GRBV) is a recently discovered DNA virus, which was demonstrated to be responsible for grapevine red blotch disease (GRBD). Its presence has been confirmed in the United States, Canada, Mexico, and South Korea in white and red Vitis vinifera cultivars, including Chardonnay. It has been shown that the three-cornered alfalfa treehopper (Spissistilus festinus) was able to both acquire the GRBV from a grapevine infected and transmit it to healthy grapevines in glasshouse conditions. Studies found that GRBD impacts fruit price, grapevine physiology, and grape berry composition and metabolism in red cultivars. This study evaluated the impact of GRBD on V. vinifera L. Chardonnay grape and wine composition and sensory properties from one vineyard during the 2014, 2015 and 2016 seasons. RESULTS: Grapes from symptomatic red blotch diseased grapevines were lower in total soluble solids, flavan-3-ol, and total phenolic content, and higher in flavonol content when compared to grapes from healthy grapevines. Wines made with grapes from symptomatic grapevines resulted mostly in lower ethanol content and higher pH when compared to wines made from healthy grapevines. Analysis of volatile compounds and descriptive analysis demonstrated that GRBD can impact wine style by altering aroma, flavor, and mouthfeel attributes. CONCLUSIONS: The impacts of GRBD on grape composition directly influenced wine chemistry. The decreased ethanol content impacted not only the levels of volatile compounds but the sensory perception during descriptive analysis. The extent of GRBD impact on the grape composition and wine composition and sensory attributes varied between seasons. © 2019 Society of Chemical Industry.


Assuntos
Frutas/química , Geminiviridae/fisiologia , Doenças das Plantas/virologia , Vitis/virologia , Vinho/análise , Vinho/virologia , Antocianinas/química , Antocianinas/metabolismo , Aromatizantes/química , Aromatizantes/metabolismo , Frutas/metabolismo , Humanos , Fenóis/química , Fenóis/metabolismo , Estações do Ano , Paladar , Vitis/química , Vitis/metabolismo
10.
Biotechnol Bioeng ; 116(4): 781-792, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30451295

RESUMO

Red wine fermentations are performed in the presence of grape skins and seeds to ensure the extraction of color and other phenolics. The presence of these solids results in two distinct phases in the fermentor, as the solids float to the top to form a "cap." Modeling of red wine fermentation is, therefore, complex and must consider spatial heterogeneity to predict fermentation kinetics. We have developed a reactor-engineering model for red wine fermentations that includes the fundamentals of fermentation kinetics, heat transfer, diffusion, and compressible fluid flow. To develop the heat transfer component of the model, the heat transfer properties of grapes were experimentally determined as a function of fermentation progression. COMSOL was used to solve all components of the model simultaneously utilizing a finite element analysis approach. Predictions from this model were validated using prior experimental work. Model prediction and experimental data showed excellent agreement. The model was then used to predict spatial profiles of active yeast cell concentration and ethanol productivity, as well as liquid velocity profiles. Finally, the model was used to predict how these gradients would change with differences in initial bioavailable nitrogen concentration, a key parameter in predicting fermentation outcome in nitrogen-limited wine fermentations.


Assuntos
Etanol/metabolismo , Fermentação , Vitis/metabolismo , Vinho/análise , Leveduras/metabolismo , Biotecnologia , Simulação por Computador , Etanol/análise , Cinética , Modelos Biológicos , Fenóis/análise , Fenóis/metabolismo , Temperatura , Condutividade Térmica , Vitis/química , Leveduras/química
11.
Molecules ; 24(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986909

RESUMO

Phenolic extraction is a critical part of red wine making. Though empirical models of phenolic extraction kinetics exist, the current level of mechanistic understanding does not allow for accurate predictions. In this work, we propose a mechanistic model for the extraction of phenolics from grape skins and seeds as a function of temperature and ethanol. This model examines the release of phenolics, the adsorption of phenolics onto grape material, and the disappearance of anthocyanins from solution. Additionally, we performed epifluorescence microscopy to explore our finding that seed tannins' release rate appears independent of concentration, and found that the grape seed appears to ablate over fermentation. We also determined the activation energy of anthocyanin disappearance, in good agreement with similar systems. The proposed model results in an excellent fit, and increases the understanding of phenolic extraction and the ability to predict and optimize product outcome in red wine making.


Assuntos
Fenóis/química , Vitis/química , Vinho , Etanol/química , Fermentação/fisiologia , Sementes/química , Temperatura
12.
Molecules ; 24(18)2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540067

RESUMO

The effects of temperature and ethanol concentration on the kinetics of anthocyanin adsorption and desorption interactions with five cell wall materials (CWM) of different composition were investigated. Using temperatures of 15 °C and 30 °C and model wine with ethanol concentrations of 0% and 15% (v/v) over 120 min, the adsorption and desorption rates of five anthocyanin-glucosides were recorded in triplicate. Small-scale experiments were conducted using a benchtop incubator to mimic a single berry fermentation. Results indicate that more than 90% of the adsorption occurs within the first 60 min of the addition of anthocyanins to CWM. However, desorption appears to occur much faster, with maximum desorption being reached after 30 min. The extent of both adsorption and desorption was clearly dependent not only on temperature and ethanol concentration but also on the CWM composition.


Assuntos
Antocianinas/química , Parede Celular/química , Etanol/química , Frutas/química , Temperatura Alta , Vitis/química , Glucosídeos/química
13.
Molecules ; 24(19)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581447

RESUMO

Desorption of proanthocyanidins (PA) from grape cell wall material (CWM) was investigated in solutions of varying ethanol concentrations and increasing temperature. The results reveal the reversibility of PA-CWM interactions and the role that temperature and ethanol concentration play in the extent of PA desorption. Sequentially raising temperature from 15 to 35 °C resulted in desorption of up to 48% of the initial adsorbed PA. A comparison to a phenolic extraction model showed significant differences between the predicted and actual amount of PA that desorbed from the CWM. This suggests that the initial conditions of temperature and ethanol concentration must be considered when estimating PA extraction in red wine production. Under typical winemaking conditions, a significant amount of PA may be irreversibly adsorbed if exposed to CWM at low temperature (i.e., cold soak). A compositional analysis suggests the selective desorption of large molecular weight PA from CWM under all experimental conditions. Additionally, a preferential desorption of skin-derived PA over seed-derived PA was noted in the absence of ethanol.


Assuntos
Parede Celular/química , Proantocianidinas/química , Vinho/análise , Etanol/química , Temperatura Alta , Peso Molecular , Vitis/química
14.
J Sci Food Agric ; 99(2): 805-815, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30003547

RESUMO

BACKGROUND: Cold soak is a prefermentative maceration technique believed to enhance grape skin extraction. Studies show variable results depending on cold soak and winemaking conditions. To investigate the effect of cold soak more fully, systematic and highly reproducible Cabernet Sauvignon fermentations with increasing cold-soak durations were performed. RESULTS: Phenolic extraction during cold soak and fermentation showed significant differences among all treatments for monitored phenolics at the end of the cold soak. At the end of alcoholic fermentation only gallic acid, (-)-epicatechin, and the flavonols were significant, and only (-)-epicatechin was significant after bottle ageing. Descriptive analysis of the bottled wines showed that the 4- and 7-day treatments were significantly higher in caramelized/vanilla/browned flavor compared to the 1-day treatment and lower levels of bitterness were observed up to 2 days of cold soak. While oligosaccharide content increased with increasing cold-soak duration, differences were not large enough to result in sensory differences. CONCLUSION: While increased cold soak duration led to differences in phenolic extraction during early fermentation, these differences did not last through to the end product. Thus, under the conditions of this study, cold-soak duration had little overall impact on Cabernet Sauvignon wine composition and style. © 2018 Society of Chemical Industry.


Assuntos
Manipulação de Alimentos/métodos , Fenóis/química , Vitis/química , Vinho/análise , Temperatura Baixa , Fermentação , Frutas/química
15.
Molecules ; 20(5): 7974-89, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25946556

RESUMO

The impact of increasing cold soak (CS) duration (0, 1, 4, 7, and 10 days at 10 °C) on the extraction of phenolic compounds during the CS period and primary fermentation as well as the final composition of Cabernet Sauvignon wine was investigated. The results showed that CS duration had no effect on hydroxycinnamate and flavonol extractions. Greater amounts of gallic acid, (+)-catechin, (-)-epicatechin, and total tannins were extracted with increasing CS duration, with differences maintained during bottle aging. Anthocyanin extraction and color density increased with longer periods of CS; however, by the end of primary fermentation, as well as three months' bottle aging, there were no significant differences due to CS duration. The wines made with seven and 10 days of CS had higher seed tannin contributions and total tannin compared to the non-CS wine, which could potentially result in increased astringency.


Assuntos
Fermentação/fisiologia , Fenóis/química , Vitis/química , Vinho/análise , Antocianinas/química , Catequina/química , Temperatura Baixa , Cor , Flavonóis/química , Ácido Gálico/química , Sementes/química , Taninos/química
16.
Food Chem ; 439: 138032, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039610

RESUMO

The majority of rosé wines are bottled in clear bottles as color is an important factor in consumer preference. Post-bottling wine can be exposed to UV-visible light and temperature fluctuations resulting in quality degradation. This study investigated the impact of bottle color (flint and antique green), light exposure (darkness, LED and fluorescent bulb), and temperature (12 °C and 22 °C) on rosé wine quality using a full factorial design with three different wines (Grenache, Pinot noir and Zinfandel). The impact on chemical composition, color, phenolics and aromatics was determined. Projective mapping was carried out for sensorial analysis. Changes in the aromatics, color and phenolic composition were detectable after three months and more noticeable after six months of storage. Overall, all variables studied impacted rosé wine characteristics significantly. However, higher temperature in combination with clear glass bottles under fluorescent light were the most detrimental conditions.


Assuntos
Vinho , Vinho/análise , Iluminação , Cor , Temperatura , Luz , Fenóis/análise
17.
J Agric Food Chem ; 72(14): 8060-8071, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38533667

RESUMO

Smoke taint in wine has become a critical issue in the wine industry due to its significant negative impact on wine quality. Data-driven approaches including univariate analysis and predictive modeling are applied to a data set containing concentrations of 20 VOCs in 48 grape samples and 56 corresponding wine samples with a taster-evaluated smoke taint index. The resulting models for predicting the smoke taint index of wines are highly predictive when using as inputs VOC concentrations after log conversion in both grapes and wines (Pearson Correlation Coefficient PCC = 0.82; R2 = 0.68) and less so when only grape VOCs are used (Pearson Correlation Coefficient PCC = 0.76; R2 = 0.56), and the classification models also show the capacity for detecting smoke-tainted wines using both wine and grape VOC concentrations (Recall = 0.76; Precision = 0.92; F1 = 0.82) or using only grape VOC concentrations (Recall = 0.74; Precision = 0.92; F1 = 0.80). The performance of the predictive model shows the possibility of predicting the smoke taint index of the wine and grape samples before fermentation. The corresponding code of data analysis and predictive modeling of smoke taint in wine is available in the Github repository (https://github.com/IBPA/smoke_taint_prediction).


Assuntos
Vitis , Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Compostos Orgânicos Voláteis/análise , Fumaça/análise , Frutas/química , Nicotiana
18.
J Agric Food Chem ; 72(20): 11617-11628, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728580

RESUMO

When grapes are exposed to wildfire smoke, certain smoke-related volatile phenols (VPs) can be absorbed into the fruit, where they can be then converted into volatile-phenol (VP) glycosides through glycosylation. These volatile-phenol glycosides can be particularly problematic from a winemaking standpoint as they can be hydrolyzed, releasing volatile phenols, which can contribute to smoke-related off-flavors. Current methods for quantitating these volatile-phenol glycosides present several challenges, including the requirement of expensive capital equipment, limited accuracy due to the molecular complexity of the glycosides, and the utilization of harsh reagents. To address these challenges, we proposed an enzymatic hydrolysis method enabled by a tailored enzyme cocktail of novel glycosidases discovered through genome mining, and the generated VPs from VP glycosides can be quantitated by gas chromatography-mass spectrometry (GC-MS). The enzyme cocktails displayed high activities and a broad substrate scope when using commercially available VP glycosides as the substrates for testing. When evaluated in an industrially relevant matrix of Cabernet Sauvignon wine and grapes, this enzymatic cocktail consistently achieved a comparable efficacy of acid hydrolysis. The proposed method offers a simple, safe, and affordable option for smoke taint analysis.


Assuntos
Frutas , Cromatografia Gasosa-Espectrometria de Massas , Glicosídeo Hidrolases , Glicosídeos , Fenóis , Fumaça , Vitis , Hidrólise , Glicosídeos/química , Glicosídeos/metabolismo , Glicosídeos/análise , Fumaça/análise , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Fenóis/química , Fenóis/metabolismo , Vitis/química , Frutas/química , Frutas/enzimologia , Vinho/análise , Incêndios Florestais , Biocatálise
19.
Front Plant Sci ; 14: 1085939, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778687

RESUMO

Introduction: Overhead photoselective shade films installed in vineyards improve berry composition in hot grape-growing regions. The aim of the study was to evaluate the flavonoid and aroma profiles and composition of wines from Cabernet Sauvignon grapes (Vitis vinifera L.) treated with partial solar radiation exclusion. Methods: Experimental design consisted in a randomized experiment with four shade films (D1, D3, D4, D5) with differing solar radiation spectra transmittance and compared to an uncovered control (C0) performed over two seasons (2021 and 2022) in Oakville (CA, USA). Berries were collected by hand at harvest and individual vinifications for each treatment and season were conducted in triplicates. Then, wine chemical composition, flavonoid and aromatic profiles were analyzed. Results: The wines from D4 treatment had greater color intensity and total phenolic index due to co-pigmentation with anthocyanins. Shade film wines D5 and D1 from the 2020 vintage demonstrated increased total anthocyanins in the hotter of the two experimental years. In 2021, reduced cluster temperatures optimized total anthocyanins in D4 wines. Reduced cluster temperatures modulated anthocyanin acylation, methylation and hydroxylation in shade film wines. Volatile aroma composition was analyzed using gas chromatography mass spectroscopy (GCMS) and D4 wines exhibited a more fruity and pleasant aroma profile than C0 wines. Discussion: Results provided evidence that partial solar radiation exclusion in the vineyard using overhead shade films directly improved flavonoid and aroma profiles of resultant wines under hot vintage conditions, providing a tool for combatting air temperatures and warmer growing conditions associated with climate change.

20.
Food Chem ; 371: 131163, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583184

RESUMO

Wine final color, taste and aroma are closely related to the accumulation of secondary metabolites that may be affected by deficit irrigation applied in viticulture. A two-year study was conducted to assess the different fractions of crop evapotranspiration (ETc) irrigation replacement on wine composition, addressing the analysis of flavonoids and volatiles under context of global warming. Irrigating with 100% ETc (full grapevine demand) enhanced wine hue, antioxidant capacity, and some aromas; however, it came with a diminution of flavonoids and a less stable flavonoid profile. Replacing 25 and 50% ETc in wine grape improved wine color intensity, concentration of flavonoids, and shifted the aromatic profiles. These treatments increased some terpenes and esters which may enhance the desirable aromas for Cabernet Sauvignon, and decreased C6 alcohols related to unpleasant ones. Therefore, despite the warming trends in Mediterranean climates, 100% ETc irrigation would be not advisable to improve or maintain wine quality, and 50% ETc was sufficient.


Assuntos
Vitis , Vinho , Antocianinas/análise , Frutas/química , Fenóis/análise , Vinho/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA