Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 369, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37488482

RESUMO

BACKGROUND: In plant water relations research, predawn leaf water potential (Ψpd) is often used as a proxy for soil water potential (Ψsoil), without testing the underlying assumptions that nighttime transpiration is negligible and that enough time has passed for a hydrostatic equilibrium to be established. The goal of this research was to test the assumption Ψpd = Ψsoil for field-grown grapevines. RESULTS: A field trial was conducted with 30 different cultivars of wine grapes grown in a single vineyard in arid southeastern Washington, USA, for two years. The Ψpd and the volumetric soil water content (θv) under each sampled plant were measured multiple times during several dry-down cycles. The results show that in wet soil (Ψsoil > - 0.14 MPa or relative extractable water content, θe > 0.36), Ψpd was significantly lower than Ψsoil for all 30 cultivars. Under dry soil conditions (Ψsoil < - 0.14 MPa or θe < 0.36) Ψpd lined up better with Ψsoil. There were differences between cultivars, but these were not consistent over the years. CONCLUSION: These results suggest that for wet soils Ψpd of grapevines cannot be used as a proxy for Ψsoil, while the Ψpd = Ψsoil assumption may hold for dry soils.


Assuntos
Solo , Água , Folhas de Planta , Fazendas , Transpiração Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA