Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(13): 5108-5126, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38926930

RESUMO

Generating simulation-ready molecular models for the LAMMPS molecular dynamics (MD) simulation software package is a difficult task and impedes the more widespread and efficient use of MD in materials design and development. Fixed-bond force fields generally require manual assignment of atom types, bonded interactions, charges, and simulation domain sizes. A new LAMMPS pre- and postprocessing toolkit (LUNAR) is presented that efficiently builds molecular systems for LAMMPS. LUNAR automatically assigns atom types, generates bonded interactions, assigns charges, and provides initial configuration methods to generate large molecular systems. LUNAR can also incorporate chemical reactivity into simulations by facilitating the use of the REACTER protocol. Additionally, LUNAR provides postprocessing for free volume calculations, cure characterization calculations, and property predictions from LAMMPS thermodynamic outputs. LUNAR has been validated via building and simulation of pure epoxy and cyanate ester polymer systems with a comparison of the corresponding predicted structures and properties to benchmark values, including experimental results from the literature. LUNAR provides the tools for the computationally driven development of next-generation composite materials in the Integrated Computational Materials Engineering (ICME) and Materials Genome Initiative (MGI) frameworks. LUNAR is written in Python with the usage of NumPy and can be used via a graphical user interface, a command line interface, or an integrated design environment. LUNAR is freely available via GitHub.


Assuntos
Simulação de Dinâmica Molecular , Software , Termodinâmica , Polímeros/química , Automação
2.
Soft Matter ; 19(35): 6731-6742, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37622445

RESUMO

It is well-known that all-atom molecular dynamics (MD) predictions of mechanical properties of thermoset resins suffer from multiple accuracy issues associated with their viscoelastic nature. The nanosecond simulation times of MD simulations do not allow for the direct simulation of the molecular conformational relaxations that occur under laboratory time scales. This adversely affects the prediction of mechanical properties at realistic strain rates, intermediate degrees of cure, and elevated temperatures. While some recent studies have utilized a time-temperature superposition approach to relate MD predictions to expected laboratory observations, such an approach becomes prohibitively difficult when simulating thermosets with a combination of strain rates, intermediate degrees of cure, and temperatures. In this study, a phenomenological approach is developed to map the predictions of Young's modulus and Poisson's ratio for a DGEBF/DETDA epoxy system to the corresponding laboratory-based properties for intermediate degrees of cure and temperatures above and below the glass transition temperature. The approach uses characterization data from dynamical mechanical analysis temperature sweep experiments. The mathematical formulation and experimental characterization of the mapping is described, and the resulting mapping of computationally-predicted to experimentally-observed elastic properties for various degrees of cure and temperatures are demonstrated and validated. This mapping is particularly important to mitigate the strain-rate effect associated with MD predictions, as well as to accurately predict mechanical properties at elevated temperatures and intermediate degrees of cure to facilitate accurate and efficient composite material process modeling.

3.
Soft Matter ; 18(39): 7550-7558, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36149371

RESUMO

To enable the design and development of the next generation of high-performance composite materials, there is a need to establish improved computational simulation protocols for accurate and efficient prediction of physical, mechanical, and thermal properties of thermoset resins. This is especially true for the prediction of glass transition temperature (Tg), as there are many discrepancies in the literature regarding simulation protocols and the use of cooling rate correction factors for predicting values using molecular dynamics (MD) simulation. The objectives of this study are to demonstrate accurate prediction the Tg with MD without the use of cooling rate correction factors and to establish the influence of simulated conformational state and heating/cooling cycles on physical, mechanical, and thermal properties predicted with MD. The experimentally-validated MD results indicate that accurate predictions of Tg, elastic modulus, strength, and coefficient of thermal expansion are highly reliant upon establishing MD models with mass densities that match experiment within 2%. The results also indicate the cooling rate correction factors, model building within different conformational states, and the choice of heating/cooling simulation runs do not provide statistically significant differences in the accurate prediction of Tg values, given the typical scatter observed in MD predictions of amorphous polymer properties.

4.
Langmuir ; 37(39): 11526-11534, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34550699

RESUMO

The next generation of ultrahigh-strength composites for structural components of vehicles for manned missions to deep space will likely incorporate flattened carbon nanotubes (flCNTs). With a wide range of high-performance polymers to choose from as the matrix component, efficient and accurate computational modeling can be used to efficiently downselect compatible resins and provide critical physical insight into the flCNT/polymer interface. In this study, molecular dynamics simulation is used to predict the interaction energy, frictional sliding resistance, and mechanical binding of flCNT/polymer interfaces for epoxy, bismaleimide (BMI), and benzoxazine high-performance resins. The results indicate that BMI has a stronger interfacial interaction and transverse tension binding with flCNT interfaces, while benzoxazine demonstrates the strongest levels of interfacial friction resistance.

5.
Phys Chem Chem Phys ; 21(43): 23880-23892, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31647483

RESUMO

There is a great deal of attention given to spiral carbon-based nanostructures (SCBNs) because of their unique mechanical, thermal and electrical properties along with fascinating morphology. Dispersing SCBNs inside a polymer matrix leads to extraordinary properties of nanocomposites in diverse fields. However, the role of the interfacial mechanical properties of these nanocomposites remains unknown. Here, using molecular dynamics simulations, the characteristics of interfacial load transfer of SCBN-polyethylene nanocomposites are explored. Considering the geometric characteristics of SCBNs, new insight into the separation behavior of nanoparticles in normal and sliding modes is addressed. Interestingly, the results show that the maximum force and the separation energy of the SCBNs are much larger than those of graphene because of interlocking of the coils and polymer. The heavy influence of changes in the geometric characteristics of SCBNs on the separation behavior is observed. Pullout tests reveal that the influence of parameters such as the length and number of polyethylene chains, temperature, and functionalization of the SCBNs on the interfacial mechanical properties is also significant. This study sheds new light in understanding the crucial effect of the interaction of SCBNs with polymer chains on the interfacial mechanical properties, which can lead to better performance of nanocomposites.

7.
Compos Sci Technol ; 166: 10-19, 2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31359899

RESUMO

Molecular dynamics simulations of carbon nanotube (CNT) composites, in which the CNTs are continuous across the periodic boundary, overestimate the experimentally measured mechanical properties of CNT composites along the fiber direction. Since the CNTs in these composites are much shorter than the composite dimensions, load must be transferred either directly between CNTs or through the matrix, a mechanism that is absent in simulations of effectively continuous CNTs. In this study, the elastic and fracture properties of high volume fraction discontinuous carbon nanotube/amorphous carbon composite systems were compared to those of otherwise equivalent continuous CNT composites using ReaxFF reactive molecular dynamics simulations. These simulations were used to show how the number of nanotube-matrix interfacial covalent bonds affect composite mechanical properties. Furthermore, the mechanical impact of interfacial bonding was decomposed to reveal its effect on the properties of the CNTs, the interfacial layer of matrix, and the bulk matrix. For the composites with continuous reinforcement, it was found that any degree of interfacial bonding has a negative impact on axial tensile strength and stiffness. This is due to disruption of the structure of the CNTs and interfacial matrix layer by the interfacial bonds. For the discontinuous composites, the modulus was maximized between 4%-7% interfacial bonding and the strength continues to increase up to the highest levels of interfacial bonding studied. Areas of low stress and voids were observed in the simulated discontinuous composites at the ends of the tubes, from which fracture was observed to initiate. Experimental carbon nanotube yarn composites were fabricated and tested. The results were used to illustrate knockdown factors relative to the mechanical performance of the tubes themselves.

8.
J Biomech Eng ; 140(8)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30003256

RESUMO

Clinical treatments of skeletal muscle weakness are hindered by a lack of an approach to evaluate individual muscle force. Intramuscular pressure (IMP) has shown a correlation to muscle force in vivo, but patient to patient and muscle to muscle variability results in difficulty of utilizing IMP to estimate muscle force. The goal of this work was to develop a finite element model of whole skeletal muscle that can predict IMP under passive and active conditions to further investigate the mechanisms of IMP variability. A previously validated hypervisco-poroelastic constitutive approach was modified to incorporate muscle activation through an inhomogeneous geometry. Model parameters were optimized to fit model stress to experimental data, and the resulting model fluid pressurization data were utilized for validation. Model fitting was excellent (root-mean-square error or RMSE <1.5 kPa for passive and active conditions), and IMP predictive capability was strong for both passive (RMSE 3.5 mmHg) and active (RMSE 10 mmHg at in vivo lengths) conditions. Additionally, model fluid pressure was affected by length under isometric conditions, as increases in stretch yielded decreases in fluid pressurization following a contraction, resulting from counteracting Poisson effects. Model pressure also varied spatially, with the highest gradients located near aponeuroses. These findings may explain variability of in vivo IMP measurements in the clinic, and thus help reduce this variability in future studies. Further development of this model to include isotonic contractions and muscle weakness would greatly benefit this work.


Assuntos
Modelos Biológicos , Músculo Esquelético/fisiologia , Pressão , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Teste de Materiais , Coelhos
9.
Nano Lett ; 15(11): 7179-88, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26457771

RESUMO

There has been long-standing interest in tuning the metal-insulator phase transition in vanadium dioxide (VO2) via the addition of chemical dopants. However, the underlying mechanisms by which doping elements regulate the phase transition in VO2 are poorly understood. Taking advantage of aberration-corrected scanning transmission electron microscopy, we reveal the atomistic origins by which tungsten (W) dopants influence the phase transition in single crystalline WxV1-xO2 nanowires. Our atomically resolved strain maps clearly show the localized strain normal to the (122̅) lattice planes of the low W-doped monoclinic structure (insulator). These strain maps demonstrate how anisotropic localized stress created by dopants in the monoclinic structure accelerates the phase transition and lead to relaxation of structure in tetragonal form. In contrast, the strain distribution in the high W-doped VO2 structure is relatively uniform as a result of transition to tetragonal (metallic) phase. The directional strain gradients are furthermore corroborated by density functional theory calculations that show the energetic consequences of distortions to the local structure. These findings pave the roadmap for lattice-stress engineering of the MIT behavior in strongly correlated materials for specific applications such as ultrafast electronic switches and electro-optical sensors.

10.
Nano Lett ; 15(5): 2998-3007, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25871572

RESUMO

α-MnO2 is a promising material for Li-ion batteries and has unique tunneled structure that facilitates the diffusion of Li(+). The overall electrochemical performance of α-MnO2 is determined by the tunneled structure stability during its interaction with Li(+), the mechanism of which is, however, poorly understood. In this paper, a novel tetragonal-orthorhombic-tetragonal symmetric transition during lithiation of K(+)-stabilized α-MnO2 is observed using in situ transmission electron microscopy. Atomic resolution imaging indicated that 1 × 1 and 2 × 2 tunnels exist along c ([001]) direction of the nanowire. The morphology of a partially lithiated nanowire observed in the ⟨100⟩ projection is largely dependent on crystallographic orientation ([100] or [010]), indicating the existence of asynchronous expansion of α-MnO2's tetragonal unit cell along a and b lattice directions, which results in a tetragonal-orthorhombic-tetragonal (TOT) symmetric transition upon lithiation. Such a TOT transition is confirmed by diffraction analysis and Mn valence quantification. Density functional theory (DFT) confirms that Wyckoff 8h sites inside 2 × 2 tunnels are the preferred sites for Li(+) occupancy. The sequential Li(+) filling at 8h sites leads to asynchronous expansion and symmetry degradation of the host lattice as well as tunnel instability upon lithiation. These findings provide fundamental understanding for appearance of stepwise potential variation during the discharge of Li/α-MnO2 batteries as well as the origin for low practical capacity and fast capacity fading of α-MnO2 as an intercalated electrode.

11.
J Comput Chem ; 36(21): 1587-96, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26096628

RESUMO

As the sophistication of reactive force fields for molecular modeling continues to increase, their use and applicability has also expanded, sometimes beyond the scope of their original development. Reax Force Field (ReaxFF), for example, was originally developed to model chemical reactions, but is a promising candidate for modeling fracture because of its ability to treat covalent bond cleavage. Performing reliable simulations of a complex process like fracture, however, requires an understanding of the effects that various modeling parameters have on the behavior of the system. This work assesses the effects of time step size, thermostat algorithm and coupling coefficient, and strain rate on the fracture behavior of three carbon-based materials: graphene, diamond, and a carbon nanotube. It is determined that the simulated stress-strain behavior is relatively independent of the thermostat algorithm, so long as coupling coefficients are kept above a certain threshold. Likewise, the stress-strain response of the materials was also independent of the strain rate, if it is kept below a maximum strain rate. Finally, the mechanical properties of the materials predicted by the Chenoweth C/H/O parameterization for ReaxFF are compared with literature values. Some deficiencies in the Chenoweth C/H/O parameterization for predicting mechanical properties of carbon materials are observed.

12.
J Phys Chem A ; 119(37): 9710-21, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26315717

RESUMO

In light of the enduring interest in using nanostructured carbon materials as reinforcing elements in composite materials, there is a significant need for a reliable computational tool capable to predict the mechanical properties, both elastic properties and properties at the point of fracture, in large-scale atomistic simulations. A revised version of the ReaxFF reactive force field parametrization for carbon, ReaxFFC-2013, was recently published and is notable because of the inclusion of density functional theory (DFT)-derived mechanical data for diamond and graphite in the fitting set. The purpose of the present work is to assess the accuracy of this new force field for predicting the mechanical properties for several allotropes of carbon, both in the elastic regime and during fracture. The initial discussion focuses on the performance of ReaxFFC-2013 for diamond and graphene, the two carbon forms for which mechanical properties were included in the parametrization data set. After it is established that simulations conducted with the new force field yield results that agree well with DFT and experimental data for most properties of interest, its transferability to amorphous carbon and carbon nanotubes is explored. ReaxFFC-2013 is found to produce results that, for the most part, compare favorably with available experimental data for single and multiwalled nanotubes and for amorphous carbon models prepared over a range of densities. Although there is opportunity for improvement in some predicted properties, the ReaxFFC-2013 parametrization is shown to generally perform well for each form of carbon and to compare favorably with DFT and experimental data.

13.
J Phys Chem B ; 128(17): 4255-4265, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38648370

RESUMO

Molecular dynamics (MD) simulation is an important tool for predicting thermo-mechanical properties of polymer resins at the nanometer length scale, which is particularly important for efficient computationally driven design of advanced composite materials and structures. Because of the statistical nature of modeling amorphous materials on the nanometer length scale, multiple MD models (replicates) are typically built and simulated for statistical sampling of predicted properties. Larger replicates generally provide higher precision in the predictions but result in higher simulation times. Unfortunately, there is insufficient information in the literature to establish guidelines between MD model size and the resulting precision in predicted thermo-mechanical properties. The objective of this study was to determine the optimal MD model size of epoxy resin to balance efficiency and precision. The results show that an MD model size of 15,000 atoms provides for the fastest simulations without sacrificing precision in the prediction of mass density, elastic properties, strength, and thermal properties of epoxy. The results of this study are important for efficient computational process modeling and integrated computational materials engineering (ICME) for the design of next-generation composite materials for demanding applications.

14.
J Am Chem Soc ; 135(37): 13775-85, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24016308

RESUMO

There is a surging interest in 3D graphitic nanostructures which possess outstanding properties enabling them to be prime candidates for a new generation of nanodevices and energy-absorbing materials. Here we study the stretching instability and reversibility of tightly wound helical carbon nanotubes (HCNTs) by atomistic simulations. The intercoil van der Waals (vdW) interaction-induced flattening of HCNT walls prior to loading is constrained by the defects coordinated for the curvature formation of helices. The HCNTs exhibit extensive stretchability in the range from 400% to 1000% as a result of two distinct deformation mechanisms depending on the HCNT size. For small HCNTs tremendous deformation is achieved by domino-type partial fracture events, whereas for large HCNTs this is accomplished by stepwise buckling of coils. The formation and fracture of edge-closed graphene ribbons occur at lower temperatures, while at elevated temperatures the highly distributed fracture realizes a phenomenal stretchability. The results of cyclic stretching-reversing simulations of large HCNTs display pronounced hysteresis loops, which produce large energy dissipation via full recovery of buckling and vdW bondings. This study provides physical insights into the origins of high ductility and superior reversibility of hybrid CNT structures.

15.
Materials (Basel) ; 17(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203962

RESUMO

Polymer composites, hailed for their ultra-strength and lightweight attributes, stand out as promising materials for the upcoming era of space vehicles. The selection of the polymer matrix plays a pivotal role in material design, given its significant impact on bulk-level properties through the reinforcement/polymer interface. To aid in the systematic design of such composite systems, molecular-level calculations are employed to establish the relationship between interfacial characteristics and mechanical response, specifically stiffness. This study focuses on the interaction of fluorinated and non-fluorinated cyanate ester monomers with graphene or a BN monolayer, representing non-polymerized ester composites. Utilizing micromechanics and the density functional theory method to analyze interaction energy, charge density, and stiffness, our findings reveal that the fluorinated cyanate-ester monomer demonstrates lower interaction energy, reduced pull-apart force, and a higher separation point compared to the non-fluorinated counterpart. This behavior is attributed to the steric hindrance caused by fluorine atoms. Furthermore, the BN monolayer exhibits enhanced transverse stiffness due to increased interfacial strength, stemming from the polar nature of B-N bonds on the surface, as opposed to the C-C bonds of graphene. These molecular-level results are intended to inform the design of next-generation composites incorporating cyanate esters, specifically for structural applications.

16.
Nanomaterials (Basel) ; 13(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36678040

RESUMO

In this work, a characterization study of the interfacial interaction between different types of graphene nanoplatelets and an epoxy matrix is computationally performed. To quantify the discrete mutual graphene-epoxy "interfacial interaction energy" (IIE) within the nanocomposite, molecular dynamics simulations with a reactive force field are performed on a localized model of the suggested nanocomposite. Pull-out molecular dynamics simulations are also performed to predict the interfacial shear strength between the two constituents. The results indicate a significant increase in interfacial adhesion of functionalized nanoplatelets with the hosting epoxy matrix relative to virgin graphene nanoplatelets. The obtained results also demonstrate a dramatic increase in the interfacial interaction energy (IIE) (up to 570.0%) of the functionalized graphene/epoxy nanocomposites relative to the unmodified graphene/epoxy nanocomposites. In the same context, the surface functionalization of graphene nanoplatelets with the polymer matrix leads to a significant increase in the interfacial shear strength (ISS) (up to 750 times). The reported findings in this paper are essential and critical to producing the next generation of lightweight and ultra-strong polymer-based nanocomposite structural materials.

17.
ACS Appl Eng Mater ; 1(11): 3167-3177, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38037665

RESUMO

Polyether ether ketone (PEEK) is a semicrystalline thermoplastic that is used in high-performance composites for a wide range of applications. Because the crystalline phase has a higher mass density than that of the amorphous phase, the evolution of the crystalline phase during high-temperature annealing processing steps results in the formation of residual stresses and laminate deformations, which can adversely affect the composite laminate performance. Multiscale process modeling, utilizing molecular dynamics, micromechanics, and phenomenological PEEK crystal kinetic laws, is used to predict the evolution of volumetric shrinkage, elastic properties, and thermal properties, as a function of crystalline phase evolution, and thus annealing time, in the 306-328 °C temperature range. The results indicate that lower annealing temperatures in this range result in a faster evolution of thermomechanical properties and shrinkage toward the pure crystalline values. Therefore, from the perspective of composite processing, it may be more advantageous to choose the higher annealing rates in this range to slow the volumetric shrinkage and allow PEEK stress relaxation mechanisms more time to relax internal residual stresses in PEEK composite laminates and structures.

18.
ACS Appl Nano Mater ; 6(13): 11260-11268, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37469508

RESUMO

An approach is established for fabricating high-strength and high-stiffness composite laminates with continuous carbon nanotube (CNT) yarns for scaled-up mechanical tests and potential aerospace structure applications. Continuous CNT yarns with up to 80% degree of nanotube alignment and a unique self-assembled graphitic CNT packing result in their specific tensile strengths of 1.77 ± 0.07 N/tex and an apparent specific modulus of 92.6 ± 3.2 N/tex. Unidirectional CNT yarn reinforced composite laminates with a CNT concentration of greater than 80 wt % and minimal microscale voids are fabricated using filament winding and aerospace-grade resin matrices. A specific tensile strength of up to 1.71 GPa/(g cm-3) and specific modulus of 256 GPa/(g cm-3) are realized; the specific modulus exceeds current state-of-the-art unidirectional carbon fiber composite laminates. The specific modulus of the laminates is 2.76 times greater than the specific modulus of the constituent CNT yarns, a phenomenon not observed in carbon fiber reinforced composites. The results demonstrate an effective approach for fabricating high-strength CNT yarns into composites for applications that require specific tensile modulus properties that are significantly beyond state-of-the-art carbon fiber composites and potentially open an unexplored performance region in the Ashby chart for composite material applications.

19.
ACS Appl Eng Mater ; 1(10): 2555-2566, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37915552

RESUMO

Glassy carbon (GC) material derived from pyrolyzed furan resin was modeled by using reactive molecular dynamics (MD) simulations. The MD polymerization simulation protocols to cure the furan resin precursor material are validated via comparison of the predicted density and Young's modulus with experimental values. The MD pyrolysis simulations protocols to pyrolyze the furan resin precursor is validated by comparison of calculated density, Young's modulus, carbon content, sp2 carbon content, the in-plane crystallite size, out-of-plane crystallite stacking height, and interplanar crystallite spacing with experimental results from the literature for furan resin derived GC. The modeling methodology established in this work can provide a powerful tool for the modeling-driven design of next-generation carbon-carbon composite precursor chemistries for thermal protection systems and other high-temperature applications.

20.
RSC Adv ; 12(45): 28945-28953, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36320755

RESUMO

Flattened carbon nanotubes (flCNTs) are a primary component of many carbon nanotube (CNT) yarn and sheet materials, which are promising reinforcements for the next generation of ultra-strong composites for aerospace applications. Significant improvements in the performance of CNT materials can be realized with improvements in the load transfer between flCNTs, which are generally oriented at different angles with respect to each other. An intriguing approach to improving the load transfer is via irradiation-induced chemical crosslinking between adjacent flCNTs. The objective of this research is to use molecular dynamics (MD) simulations to predict the behavior of flCNT junctions with 0- and 90-degree orientations and varying levels of crosslinking. The results indicate that crosslinking improves the flCNT interfacial load transfer for both orientations, but degrades the flCNT tensile response. The primary toughening mechanism at the flCNT/flCNT interface is the formation of carbon chains that provide load transfer up to the point of total rupture. Based on these results, it is clear that irradiation-induced crosslinking is beneficial in CNT-based composite systems in which interfacial load transfer between flCNTs is of primary importance, even though individual flCNTs may lose some mechanical integrity with crosslinking.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA