Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Glob Chang Biol ; 30(2): e17181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38372171

RESUMO

Nitrous oxide (N2 O) is a potent greenhouse gas and causes stratospheric ozone depletion. While the emissions of N2 O from soil are widely recognized, recent research has shown that terrestrial plants may also emit N2 O from their leaves under controlled laboratory conditions. However, it is unclear whether foliar N2 O emissions are universal across varying plant taxa, what the global significance of foliar N2 O emissions is, and how the foliage produces N2 O in situ. Here we investigated the abilities of 25 common plant taxa, including trees, shrubs and herbs, to emit N2 O under in situ conditions. Using 15 N isotopic labeling, we demonstrated that the foliage-emitted N2 O was predominantly derived from nitrate. Moreover, by selectively injecting biocide in conjunction with the isolating and back-inoculating of endophytes, we demonstrated that the foliar N2 O emissions were driven by endophytic bacteria. The seasonal N2 O emission rates ranged from 3.2 to 9.2 ng N2 O-N g-1 dried foliage h-1 . Extrapolating these emission rates to global foliar biomass and plant N uptake, we estimated global foliar N2 O emission to be 1.21 and 1.01 Tg N2 O-N year-1 , respectively. These estimates account for 6%-7% of the current global annual N2 O emission of 17 Tg N2 O-N year-1 , indicating that in situ foliar N2 O emission is a universal process for terrestrial plants and contributes significantly to the global N2 O inventory. This finding highlights the importance of measuring foliar N2 O emissions in future studies to enable the accurate assigning of mechanisms and the development of effective mitigation.


Assuntos
Gases de Efeito Estufa , Plantas , Solo , Atmosfera , Biomassa , Óxido Nitroso/análise
2.
J Environ Manage ; 302(Pt A): 113960, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34700076

RESUMO

The rapid specialization of livestock production in China has contributed to spatially decoupled crop and livestock production, leading to various environmental pollution issues. Some regional agro-environmental policies have recently promoted the coupling of specialized crop and livestock farms through cooperation. However, the environmental and economic performances of such cooperation remain unclear. This study investigated multiple environmental footprints of two contrasting production systems: cooperative crop-livestock systems (CCLS) and decoupled specialized livestock systems (DSLS), using survey data of 87 ruminant farms in Northwest China. Results show that farms in CCLS had lower net greenhouse gas (GHG) emissions (12-29%), lower reactive nitrogen (Nr) emissions (21-40%), lower phosphorus footprints (PF) (41-54%), and used less cropland (24-31%) per kg animal product, compared to those in DSLS. The large differences in GHG emissions between the two systems were mainly related to enteric fermentation and resource production (used for feed production). The differences in Nr emissions and PF were mainly related to manure management. Net profits per kg animal product were higher in CCLS (13-35%) than in DSLS, and most profits originated from lower purchasing costs of feed and young livestock. Net profits and environmental footprints were negatively correlated, suggesting an environmental and economic win-win situation for CCLS. The possible obstacles to recoupling specialized crop and livestock farms through cooperation have been discussed, including farm size, contract stability, and local policies. Our study provides science-based evidence to support policymakers and specialized farms to close nutrient loops between crop and livestock production sectors through regional cooperation.


Assuntos
Gases de Efeito Estufa , Gado , Animais , Fazendas , Esterco , Nitrogênio
3.
Glob Chang Biol ; 26(2): 888-900, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31495039

RESUMO

Recycling of livestock manure to agricultural land may reduce the use of synthetic fertilizer and thereby enhance the sustainability of food production. However, the effects of substitution of fertilizer by manure on crop yield, nitrogen use efficiency (NUE), and emissions of ammonia (NH3 ), nitrous oxide (N2 O) and methane (CH4 ) as function of soil and manure properties, experimental duration and application strategies have not been quantified systematically and convincingly yet. Here, we present a meta-analysis of these effects using results of 143 published studies in China. Results indicate that the partial substitution of synthetic fertilizers by manure significantly increased the yield by 6.6% and 3.3% for upland crop and paddy rice, respectively, but full substitution significantly decreased yields (by 9.6% and 4.1%). The response of crop yields to manure substitution varied with soil pH and experimental durations, with relatively large positive responses in acidic soils and long-term experiments. NUE increased significantly at a moderate ratio (<40%) of substitution. NH3 emissions were significantly lower with full substitution (62%-77%), but not with partial substitution. Emissions of CH4 from paddy rice significantly increased with substitution ratio (SR), and varied by application rates and manure types, but N2 O emissions decreased. The SR did not significantly influence N2 O emissions from upland soils, and a relative scarcity of data on certain manure characteristic was found to hamper identification of the mechanisms. We derived overall mean N2 O emission factors (EF) of 0.56% and 0.17%, as well as NH3 EFs of 11.1% and 6.5% for the manure N applied to upland and paddy soils, respectively. Our study shows that partial substitution of fertilizer by manure can increase crop yields, and decrease emissions of NH3 and N2 O, but depending on site-specific conditions. Manure addition to paddy rice soils is recommended only if abatement strategies for CH4 emissions are also implemented.


Assuntos
Fertilizantes , Oryza , Agricultura , Animais , China , Produção Agrícola , Esterco , Nitrogênio , Óxido Nitroso , Solo
4.
Environ Sci Technol ; 54(19): 11894-11904, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32846091

RESUMO

China's fertilization practices contribute greatly to the global biogeochemical nitrogen (N) and phosphorus (P) flows, which have exceeded the safe-operating space. Here, we quantified the potentials of improved nutrient management in the food chain and spatial planning of livestock farms on nutrient use efficiency and losses in China, using a nutrient flow model and detailed information on >2300 counties. Annual fertilizer use could be reduced by 26 Tg N and 6.4 Tg P following improved nutrient management. This reduction N and P fertilizer use would contribute 30% and 80% of the required global reduction, needed to keep the biogeochemical N and P flows within the planetary boundary. However, there are various barriers to make this happen. A major barrier is the transportation cost due to the uneven distributions of crop land, livestock, and people within the country. The amounts of N and P in wastes and residues are larger than the N and P demand of the crops grown in 30% and 50% of the counties, respectively. We argue that a drastic increase in the recycling and utilization of N and P from wastes and residues can only happen following relocation of livestock farms to areas with sufficient cropland.


Assuntos
Nitrogênio , Fósforo , Agricultura , Animais , China , Fertilizantes , Humanos , Fósforo/análise
5.
Environ Sci Technol ; 53(12): 6678-6687, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31125212

RESUMO

Nitrogen (N) surplus is a useful indicator for improving agricultural N management and controlling N pollution. Few studies have developed benchmark values for cropping systems in China, a country with the largest N fertilizer use in the world. We established N surplus benchmarks for 13 main cropping systems, at optimal N management, using results from >4500 on-farm field experiments and a soil surface balance approach. These cropping systems accounted for about 50% of total N fertilizer consumption in Chinese agriculture in 2009. The results showed that N surplus benchmarks for single cropping systems ranged from 40 to 100 kg N ha-1 yr-1 (average 73 kg N ha-1 yr-1), and for double cropping systems from 110 to 190 kg N ha-1 yr-1 (average 160 kg N ha-1 yr-1), roughly twice that of single cropping systems. These N surplus benchmarks may be further refined, following further decreases in N deposition rates and reactive N losses as a result of strict implementation of "4R-nutrient stewardship" and improvements in fertilization techniques and agronomic managements. Our N surplus benchmarks could serve as realistic targets to improve the N management of current conventional practices, and thereby could lay the foundations for a more sustainable N management in China.


Assuntos
Benchmarking , Nitrogênio , Agricultura , China , Fertilizantes , Solo
6.
Environ Sci Technol ; 53(3): 1385-1393, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30609901

RESUMO

Developing sustainable food systems is essential, especially for emerging economies, where food systems are changing rapidly and affect the environment and natural resources. We explored possible future pathways for a sustainable food system in China, using multiple environmental indicators linked to eight of the Sustainable Development Goals (SDGs). Forecasts for 2030 in a business as usual scenario (BAU) indicate increases in animal food consumption as well as increased shortages of the land available and the water needed to produce the required food in China. Associated greenhouse gas emissions and nitrogen and phosphorus losses could become 10-42% of global emissions in 2010. We developed three main pathways besides BAU [produce more and better food (PMB), consume and waste less food (CWL), and import more food (IMF)] and analyzed their impacts and contributions to achieving one or more of the eight SDGs. Under these scenarios, the demand for land and water and the emissions of GHG and nutrients may decrease by 7-55% compared to BAU, depending on the pathway followed. A combination of PMB and CWL was most effective, while IMF externalizes impacts to countries exporting to China. Modestly increasing feed or food imports in a selective manner could ease the pressure on natural resources. Our modeling framework allows us to analyze the effects of changes in food production-consumption systems in an integrated manner, and the results can be linked to the eight SDGs. Despite formidable technological, social, educational, and structural barriers that need to be overcome, our study indicates that the ambitious targets of China's new agricultural and environmental strategy appear to be achievable.


Assuntos
Agricultura , Gases de Efeito Estufa , Animais , China , Nitrogênio , Fósforo
7.
Glob Chang Biol ; 24(5): 2198-2211, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29417720

RESUMO

China has an ever-increasing thirst for milk, with a predicted 3.2-fold increase in demand by 2050 compared to the production level in 2010. What are the environmental implications of meeting this demand, and what is the preferred pathway? We addressed these questions by using a nexus approach, to examine the interdependencies of increasing milk consumption in China by 2050 and its global impacts, under different scenarios of domestic milk production and importation. Meeting China's milk demand in a business as usual scenario will increase global dairy-related (China and the leading milk exporting regions) greenhouse gas (GHG) emissions by 35% (from 565 to 764 Tg CO2eq ) and land use for dairy feed production by 32% (from 84 to 111 million ha) compared to 2010, while reactive nitrogen losses from the dairy sector will increase by 48% (from 3.6 to 5.4 Tg nitrogen). Producing all additional milk in China with current technology will greatly increase animal feed import; from 1.9 to 8.5 Tg for concentrates and from 1.0 to 6.2 Tg for forage (alfalfa). In addition, it will increase domestic dairy related GHG emissions by 2.2 times compared to 2010 levels. Importing the extra milk will transfer the environmental burden from China to milk exporting countries; current dairy exporting countries may be unable to produce all additional milk due to physical limitations or environmental preferences/legislation. For example, the farmland area for cattle-feed production in New Zealand would have to increase by more than 57% (1.3 million ha) and that in Europe by more than 39% (15 million ha), while GHG emissions and nitrogen losses would increase roughly proportionally with the increase of farmland in both regions. We propose that a more sustainable dairy future will rely on high milk demanding regions (such as China) improving their domestic milk and feed production efficiencies up to the level of leading milk producing countries. This will decrease the global dairy related GHG emissions and land use by 12% (90 Tg CO2eq reduction) and 30% (34 million ha land reduction) compared to the business as usual scenario, respectively. However, this still represents an increase in total GHG emissions of 19% whereas land use will decrease by 8% when compared with 2010 levels, respectively.


Assuntos
Indústria de Laticínios , Efeito Estufa , Leite/provisão & distribuição , Ração Animal , Animais , Bovinos , China , Europa (Continente) , Nova Zelândia , Nitrogênio
8.
J Sci Food Agric ; 98(3): 872-883, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28686304

RESUMO

BACKGROUND: This study aimed to assess longer-term (1993-2009) effects of combined applications of fertiliser, maize stover, and cattle manure on maize yields, partial nitrogen (N) and carbon (C) balances, and water and N-use efficiencies, to guide N and C input recommendations for rain-fed maize production in northern China. RESULTS: The field trial, with three factors at five levels and 12 treatments, was conducted at Shouyang Dryland-Farming Experimental Station, Shanxi, China. Data analysis revealed higher N balances but lower C balances significantly occurred in a dry year than in a wet year. Positive N balances related to higher N inputs resulted in higher soil available N, even downward to deep layers with increasing N inputs, while positive C balances due to higher C inputs could be benefit to increase soil organic C. Based on partial N balances and grain yields, N and C inputs at ranges of 100 kg N ha-1 and 1.9-2.9 Mg C ha-1 could be recommended for target yields of 6.7-7.2 Mg ha-1 in rain-fed maize production. CONCLUSION: The study suggests that N balances close to neutral be given priority to improving N-use efficiency, and more positive C balances also be important for sustaining target yields and soil fertility levels. © 2017 Society of Chemical Industry.


Assuntos
Fertilizantes/análise , Nitrogênio/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Agricultura , Animais , Carbono/análise , Carbono/metabolismo , Bovinos , China , Esterco , Nitrogênio/análise , Chuva , Solo/química , Zea mays/química
9.
Environ Sci Technol ; 51(1): 375-383, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27997150

RESUMO

Animal manure contributes considerably to ammonia (NH3) and greenhouse gas (GHG) emissions in Europe. Various treatment technologies have been implemented to reduce emissions and to facilitate its use as fertilizer, but a systematic analysis of these technologies has not yet been carried out. This study presents an integrated assessment of manure treatment effects on NH3, nitrous oxide (N2O) and methane (CH4) emissions from manure management chains in all countries of EU-27 in 2010 using the MITERRA-Europe model. Effects of implementing 12 treatment technologies on emissions and nutrient recovery were further explored through scenario analyses; the level of implementation corresponded to levels currently achieved by forerunner countries. Manure treatment decreased GHG emissions from manures in EU countries by 0-17% in 2010, with the largest contribution from anaerobic digestion; the effects on NH3 emissions were small. Scenario analyses indicate that increased use of slurry acidification, thermal drying, incineration and pyrolysis may decrease NH3 (9-11%) and GHG (11-18%) emissions; nitrification-denitrification treatment decreased NH3 emissions, but increased GHG emissions. The nitrogen recovery (% of nitrogen excreted in housings that is applied to land) would increase from a mean of 57% (in 2010) to 61% by acidification, but would decrease to 48% by incineration. Promoting optimized manure treatment technologies can greatly contribute to achieving NH3 and GHG emission targets set in EU environmental policies.


Assuntos
Esterco , Óxido Nitroso , Amônia , Animais , Fertilizantes , Efeito Estufa , Metano
10.
Environ Sci Technol ; 50(24): 13409-13418, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27993054

RESUMO

The largest livestock production and greatest fertilizer use in the world occurs in China. However, quantification of the nutrient flows through the manure management chain and their interactions with management-related measures is lacking. Herein, we present a detailed analysis of the nutrient flows and losses in the "feed intake-excretion-housing-storage-treatment-application" manure chain, while considering differences among livestock production systems. We estimated the environmental loss from the manure chain in 2010 to be up to 78% of the excreted nitrogen and over 50% of the excreted phosphorus and potassium. The greatest losses occurred from housing and storage stages through NH3 emissions (39% of total nitrogen losses) and direct discharge of manure into water bodies or landfill (30-73% of total nutrient losses). There are large differences among animal production systems, where the landless system has the lowest manure recycling. Scenario analyses for the year 2020 suggest that significant reductions of fertilizer use (27-100%) and nutrient losses (27-56%) can be achieved through a combination of prohibiting manure discharge, improving manure collection and storages infrastructures, and improving manure application to cropland. We recommend that current policies and subsidies targeted at the fertilizer industry should shift to reduce the costs of manure storage, transport, and application.


Assuntos
Esterco , Fósforo , Agricultura , Fertilizantes , Nitrogênio , Potássio
11.
Glob Chang Biol ; 21(3): 1293-312, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25330119

RESUMO

Livestock manure contributes considerably to global emissions of ammonia (NH3 ) and greenhouse gases (GHG), especially methane (CH4 ) and nitrous oxide (N2 O). Various measures have been developed to mitigate these emissions, but most of these focus on one specific gas and/or emission source. Here, we present a meta-analysis and integrated assessment of the effects of mitigation measures on NH3 , CH4 and (direct and indirect) N2 O emissions from the whole manure management chain. We analysed the effects of mitigation technologies on NH3 , CH4 and N2 O emissions from individual sources statistically using results of 126 published studies. Whole-chain effects on NH3 and GHG emissions were assessed through scenario analysis. Significant NH3 reduction efficiencies were observed for (i) housing via lowering the dietary crude protein (CP) content (24-65%, compared to the reference situation), for (ii) external slurry storages via acidification (83%) and covers of straw (78%) or artificial films (98%), for (iii) solid manure storages via compaction and covering (61%, compared to composting), and for (iv) manure application through band spreading (55%, compared to surface application), incorporation (70%) and injection (80%). Acidification decreased CH4 emissions from stored slurry by 87%. Significant increases in N2 O emissions were found for straw-covered slurry storages (by two orders of magnitude) and manure injection (by 26-199%). These side-effects of straw covers and slurry injection on N2 O emission were relatively small when considering the total GHG emissions from the manure chain. Lowering the CP content of feed and acidifying slurry are strategies that consistently reduce NH3 and GHG emissions in the whole chain. Other strategies may reduce emissions of a specific gas or emissions source, by which there is a risk of unwanted trade-offs in the manure management chain. Proper farm-scale combinations of mitigation measures are important to minimize impacts of livestock production on global emissions of NH3 and GHG.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Amônia/análise , Esterco/análise , Metano/análise , Óxido Nitroso/análise , Agricultura , Criação de Animais Domésticos , Fertilizantes/análise
12.
J Sci Food Agric ; 95(15): 3004-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25959675

RESUMO

Livestock manures are major sources of nutrients, used for the fertilisation of cropland and grassland. Accurate estimates of the amounts of nutrients in livestock manures are required for nutrient management planning, but also for estimating nitrogen (N) budgets and emissions to the environment. Here we report on N excretion factors for a range of animal categories in policy reports by member states of the European Union (EU). Nitrogen excretion is defined in this paper as the total amount of N excreted by livestock per year as urine and faeces. We discuss the guidelines and methodologies for the estimation of N excretion factors by the EU Nitrates Directive, the OECD/Eurostat gross N balance guidebook, the EMEP/EEA Guidebook and the IPCC Guidelines. Our results show that N excretion factors for dairy cattle, other cattle, pigs, laying hens, broilers, sheep, and goats differ significantly between policy reports and between countries. Part of these differences may be related to differences in animal production (e.g. production of meat, milk and eggs), size/weight of the animals, and feed composition, but partly also to differences in the aggregation of livestock categories and estimation procedures. The methodologies and data used by member states are often not well described. There is a need for a common, harmonised methodology and procedure for the estimation of N excretion factors, to arrive at a common basis for the estimation of the production of manure N and N balances, and emissions of ammonia (NH3 ) and nitrous oxide (N2 O) across the EU.


Assuntos
Criação de Animais Domésticos , Gado/metabolismo , Esterco , Nitrogênio/metabolismo , Amônia/metabolismo , Animais , União Europeia , Humanos , Óxido Nitroso/metabolismo
14.
Environ Sci Technol ; 47(13): 7260-8, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23656482

RESUMO

The nitrogen (N) and phosphorus (P) costs of food production have increased greatly in China during the last 30 years, leading to eutrophication of surface waters, nitrate leaching to groundwater, and greenhouse gas emissions. Here, we present the results of scenario analyses in which possible changes in food production-consumption in China for the year 2030 were explored. Changes in food chain structure, improvements in technology and management, and combinations of these on food supply and environmental quality were analyzed with the NUFER model. In the business as usual scenario, N and P fertilizer consumption in 2030 will be driven by population growth and diet changes and will both increase by 25%. N and P losses will increase by 44 and 73%, respectively, relative to the reference year 2005. Scenarios with increased imports of animal products and feed instead of domestic production, and with changes in the human diet, indicate reductions in fertilizer consumption and N and P losses relative to the business as usual scenario. Implementation of a package of integrated nutrient management measures may roughly nullify the increases in losses in the business as usual scenario and may greatly increase the efficiency of N and P throughout the whole food chain.


Assuntos
Fertilizantes/análise , Abastecimento de Alimentos , Modelos Teóricos , Nitrogênio/análise , Fósforo/análise , Agricultura , Ração Animal , Animais , China , Cadeia Alimentar , Humanos , Carne , Leite
16.
J Environ Qual ; 42(4): 972-81, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24216349

RESUMO

China has made remarkable strides in recent decades to grow enough food to feed 20% of the world's population with only 9% of the world's arable land. Meanwhile, the nation is experiencing exacerbated air and water pollution problems. Agricultural growth and the pollution aggravation are closely linked with policies affecting fertilizer production and use. Essentially nonexistent in 1950, China's fertilizer industry is now a robust conglomerate producing fertilizers in amounts that not only meet domestic demand but also contribute to international trade. The industry's growth stemmed from a series of policy progressions, featuring (i) a total control system with state ownership and central planning (1949-1984), (ii) a dual system of central planning and market adjustment (1985-1997), (iii) a market-driven system with government-mandated price caps (1998-2009), and (iv) a complete market-oriented system (since 2009). In conjunction with the policy changes were massive subsidy programs totaling more than $18 billion in 2010. The support policies and subsidies helped grow the industry and safeguard an adequate supply of fertilizers at affordable costs to farmers, but the artificially low-priced fertilizers also contributed to a nationwide trend of fertilizer overuse, leading to nutrient pollution. China needs innovative policies and programs to address food security and sustainability challenges. In this study, we review and analyze policies and programs related to China's fertilizer production and use in a 60-yr span (1950-2010) and discuss its impact on the development of the industry, food security, and pressing environmental issues. Finally, our study analyzes long-term trends in fertilizer use in China and offers some key viewpoints to stimulate debates among all stakeholders.


Assuntos
Fertilizantes , Abastecimento de Alimentos , Agricultura/economia , China , Conservação dos Recursos Naturais , Meio Ambiente
17.
Nat Food ; 4(1): 74-83, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118572

RESUMO

Nearly half of global pork production and consumption occurs in China, but the transition towards intensification is associated with worsening environmental impacts. Here we explore scenarios for implementing structural and technological changes across the pork supply chain to improve environmental sustainability and meet future demand. Following the middle-of-the-road socio-economic pathway (SSP2), we estimate that the environmental footprint from the pork supply chain will increase by ~50% from 2017 to 2050. Utilizing technologies that improve feed crop production and manure management could reduce phosphorus and nitrogen losses by three-quarters and one-third, respectively, with modest reductions in greenhouse gas emissions and cropland area. Reducing pork consumption had substantial mitigation potential. Increased feed and pork imports would decrease domestic environmental footprints and meet demand, but increase footprints elsewhere. We conclude that farm-specific technologies and structural adjustments can support the development of rural, small-scale pig farms near cropland and promote circular economy principles.


Assuntos
Gases de Efeito Estufa , Carne de Porco , Carne Vermelha , Suínos , Animais , Meio Ambiente , Nitrogênio/metabolismo
18.
Nat Food ; 4(8): 677-685, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37525077

RESUMO

Feeding animals more low-opportunity-cost feed products (LCFs), such as food waste and by-products, may decrease food-feed competition for cropland. Using a feed allocation optimization model that considers the availability of feed sources and animal requirements for protein and energy, we explored the perspectives of feeding more LCFs to animals in China. We found that about one-third of the animal feed consisted of human-edible products, while only 23% of the available LCFs were used as feed during 2009-2013. An increased utilization of LCFs (45-90 Mt) could potentially save 25-32% of feed-producing cropland area without impairing livestock productivity. Parallelly, about one-third of feed-related irrigation water, synthetic fertilizer and greenhouse gas emissions would be saved. Re-allocating the saved cropland could sustain the food energy demand of 30-185 million people. Achieving the potentials of increased LCF use requires improved technology and coordination among stakeholders.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Animais , Humanos , Meio Ambiente , Ração Animal/análise , China
19.
Sci Adv ; 9(6): eadd0041, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36753554

RESUMO

Even a small net increase in soil organic carbon (SOC) mineralization will cause a substantial increase in the atmospheric CO2 concentration. It is widely recognized that the SOC mineralization within deep critical zones (2 to 12 m depth) is slower and much less influenced by anthropogenic disturbance when compared to that of surface soil. Here, we showed that 20 years of nitrogen (N) fertilization enriched a deep critical zone with nitrate, almost doubling the SOC mineralization rate. This result was supported by corresponding increases in the expressions of functional genes typical of recalcitrant SOC degradation and enzyme activities. The CO2 released and the SOC had a similar 14C age (6000 to 10,000 years before the present). Our results indicate that N fertilization of crops may enhance CO2 emissions from deep critical zones to the atmosphere through a previously disregarded mechanism. This provides another reason for markedly improving N management in fertilized agricultural soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA