RESUMO
Bacteria can acquire new traits through horizontal gene transfer. Inappropriate expression of transferred genes, however, can disrupt the physiology of the host bacteria. To reduce this risk, Escherichia coli expresses the nucleoid-associated protein, H-NS, which preferentially binds to horizontally transferred genes to control their expression. Once expression is optimized, the horizontally transferred genes may actually contribute to E. coli survival in new habitats. Therefore, we investigated whether and how H-NS contributes to this optimization process. A comparison of H-NS binding profiles on common chromosomal segments of three E. coli strains belonging to different phylogenetic groups indicated that the positions of H-NS-bound regions have been conserved in E. coli strains. The sequences of the H-NS-bound regions appear to have diverged more so than H-NS-unbound regions only when H-NS-bound regions are located upstream or in coding regions of genes. Because these regions generally contain regulatory elements for gene expression, sequence divergence in these regions may be associated with alteration of gene expression. Indeed, nucleotide substitutions in H-NS-bound regions of the ybdO promoter and coding regions have diversified the potential for H-NS-independent negative regulation among E. coli strains. The ybdO expression in these strains was still negatively regulated by H-NS, which reduced the effect of H-NS-independent regulation under normal growth conditions. Hence, we propose that, during E. coli evolution, the conservation of H-NS binding sites resulted in the diversification of the regulation of horizontally transferred genes, which may have facilitated E. coli adaptation to new ecological niches.
Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas de Fímbrias/genética , Transferência Genética Horizontal/genética , Fatores de Transcrição/genética , Adaptação Biológica/genética , Cromossomos Bacterianos , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica , Filogenia , Regiões Promotoras Genéticas , Ligação ProteicaRESUMO
DL-Penicillamine, a copper-specific metal chelator, remarkably suppressed the growth of Bacillus subtilis 168 when added to a synthetic medium under Cu(2+) limitation. DNA microarray and screening of 2,602 knockout mutants showed that the zosA gene was de-repressed in the presence of 0.1% dl-penicillamine, and that the zosA mutant was sensitive to dl-penicillamine medium. The zosA mutant delayed the growth under Cu-limitation even without the chelator, and the sensitivity to dl-penicillamine was reversed by induction using 0.3 mM IPTG and the Pspac promoter inserted directly upstream of the zosA gene. Furthermore, the zosA mutant showed elevated tolerance of excessive Cu(2+) but not of excessive Zn(2+) added to LB and synthetic media. Homology modeling of the ZosA protein suggested that the protein can fold itself into essential domains for constituting a metal transporting ATPase. Our study suggests that zosA is a candidate gene involved in copper uptake.
Assuntos
Bacillus subtilis/genética , Cobre/metabolismo , Genes Bacterianos , Bacillus subtilis/metabolismo , Mutação , Análise de Sequência com Séries de OligonucleotídeosRESUMO
Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.
Assuntos
Regulação da Expressão Gênica de Plantas , Manihot/genética , Proteínas de Plantas/genética , Proteoma , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Manihot/anatomia & histologia , Manihot/crescimento & desenvolvimento , Manihot/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Análise de Sequência de DNA , Espectrometria de Massas em Tandem , TranscriptomaRESUMO
A key step in bacterial cell division is the polymerization of the tubulin homolog FtsZ at midcell. FtsZ polymers are anchored to the cell membrane by FtsA and are required for the assembly of all other cell division proteins. In Gram-positive and cyanobacteria, FtsZ filaments are aligned by the protein SepF, which in vitro polymerizes into large rings that bundle FtsZ filaments. Here we describe the crystal structure of the only globular domain of SepF, located within the C-terminal region. Two-hybrid data revealed that this domain comprises the FtsZ binding site, and EM analyses showed that it is sufficient for ring formation, which is explained by the filaments in the crystals of SepF. Site-directed mutagenesis, gel filtration, and analytical ultracentrifugation indicated that dimers form the basic units of SepF filaments. High-resolution structured illumination microscopy suggested that SepF is membrane associated, and it turned out that purified SepF not only binds to lipid membranes, but also recruits FtsZ. Further genetic and biochemical analyses showed that an amphipathic helix at the N terminus functions as the membrane-binding domain, making SepF a unique membrane anchor for the FtsZ ring. This clarifies why Bacillus subtilis grows without FtsA or the putative membrane anchor EzrA and why bacteria lacking FtsA contain SepF homologs. Both FtsA and SepF use an amphipathic helix for membrane binding. These helices prefer positively curved membranes due to relaxed lipid density; therefore this type of membrane anchor may assist in keeping the Z ring positioned at the strongly curved leading edge of the developing septum.
Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas do Citoesqueleto/química , Modelos Moleculares , Conformação Proteica , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Cromatografia em Gel , Dicroísmo Circular , Clonagem Molecular , Cristalografia , Proteínas do Citoesqueleto/metabolismo , Primers do DNA/genética , Dimerização , Escherichia coli , Teste de Complementação Genética , Microscopia Eletrônica , Microscopia de Fluorescência , Mutagênese , Plasmídeos/genética , Polimerização , Técnicas do Sistema de Duplo-Híbrido , LevedurasRESUMO
Cytokinesis in bacteria is initiated by polymerization of the tubulin homologue FtsZ into a circular structure at midcell, the Z-ring. This structure functions as a scaffold for all other cell division proteins. Several proteins support assembly of the Z-ring, and one such protein, SepF, is required for normal cell division in Gram-positive bacteria and cyanobacteria. Mutation of sepF results in deformed division septa. It is unclear how SepF contributes to the synthesis of normal septa. We have studied SepF by electron microscopy (EM) and found that the protein assembles into very large (â¼50 nm diameter) rings. These rings were able to bundle FtsZ protofilaments into strikingly long and regular tubular structures reminiscent of eukaryotic microtubules. SepF mutants that disturb interaction with FtsZ or that impair ring formation are no longer able to align FtsZ filaments in vitro, and fail to support normal cell division in vivo. We propose that SepF rings are required for the regular arrangement of FtsZ filaments. Absence of this ordered state could explain the grossly distorted septal morphologies seen in sepF mutants.
Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Citocinese/fisiologia , Proteínas do Citoesqueleto/metabolismo , Bacillus subtilis/metabolismo , Cromatografia em Gel , GTP Fosfo-Hidrolases/metabolismo , Hidrólise , Microscopia Eletrônica , Microscopia de Fluorescência , Mutagênese , Reação em Cadeia da Polimerase , PolimerizaçãoRESUMO
Teichoic acids and acidic capsular polysaccharides are major anionic cell wall polymers (APs) in many bacteria, with various critical cell functions, including maintenance of cell shape and structural integrity, charge and cation homeostasis, and multiple aspects of pathogenesis. We have identified the widespread LytR-Cps2A-Psr (LCP) protein family, of previously unknown function, as novel enzymes required for AP synthesis. Structural and biochemical analysis of several LCP proteins suggest that they carry out the final step of transferring APs from their lipid-linked precursor to cell wall peptidoglycan (PG). In Bacillus subtilis, LCP proteins are found in association with the MreB cytoskeleton, suggesting that MreB proteins coordinate the insertion of the major polymers, PG and AP, into the cell wall.
Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Parede Celular/química , Polissacarídeos/biossíntese , Ácidos Teicoicos/biossíntese , Bacillus subtilis/genética , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Genes Letais , Mutação , Polissacarídeos/química , Polissacarídeos/genética , Ácidos Teicoicos/química , Ácidos Teicoicos/genéticaRESUMO
BACKGROUND: The two-component regulatory system, involving the histidine sensor kinase DegS and response regulator DegU, plays an important role to control various cell processes in the transition phase of Bacillus subtilis. The degU32 allele in strain 1A95 is characterized by the accumulation of phosphorylated form of DegU (DegU-P). RESULTS: Growing 1A95 cells elevated the pH of soytone-based medium more than the parental strain 168 after the onset of the transition phase. The rocG gene encodes a catabolic glutamate dehydrogenase that catalyzes one of the main ammonia-releasing reactions. Inactivation of rocG abolished 1A95-mediated increases in the pH of growth media. Thus, transcription of the rocG locus was examined, and a novel 3.7-kb transcript covering sivA, rocG, and rocA was found in 1A95 but not 168 cells. Increased intracellular fructose 1,6-bisphosphate (FBP) levels are known to activate the HPr kinase HPrK, and to induce formation of the P-Ser-HPr/CcpA complex, which binds to catabolite responsive elements (cre) and exerts CcpA-dependent catabolite repression. A putative cre found within the intergenic region between sivA and rocG, and inactivation of ccpA led to creation of the 3.7-kb transcript in 168 cells. Analyses of intermediates in central carbon metabolism revealed that intracellular FBP levels were lowered earlier in 1A95 than in 168 cells. A genome wide transcriptome analysis comparing 1A95 and 168 cells suggested similar events occurring in other catabolite repressive loci involving induction of lctE encoding lactate dehydrogenase. CONCLUSIONS: Under physiological conditions the 3.7-kb rocG transcript may be tightly controlled by a roadblock mechanism involving P-Ser-HPr/CcpA in 168 cells, while in 1A95 cells abolished repression of the 3.7-kb transcript. Accumulation of DegU-P in 1A95 affects central carbon metabolism involving lctE enhanced by unknown mechanisms, downregulates FBP levels earlier, and inactivates HPrK to allow the 3.7-kb transcription, and thus similar events may occur in other catabolite repressive loci.
Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Repressão Catabólica/genética , Regulação Bacteriana da Expressão Gênica , Óperon , RNA Mensageiro/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Carbono/metabolismo , Loci Gênicos , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Dados de Sequência Molecular , Fosforilação , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Especificidade da Espécie , Transcrição GênicaRESUMO
Bacterial bio-production during the stationary phase is expected to lead to a high target yield because the cells do not consume the substrate for growth. Bacillus subtilis is widely used for bio-production, but little is known about the metabolism during the stationary phase. In this study, we focused on the dipicolinic acid (DPA) production by B. subtilis and investigated the metabolism. We found that DPA production competes with acetoin synthesis and that acetoin synthesis genes (alsSD) deletion increases DPA productivity by 1.4-fold. The mutant showed interesting features where the glucose uptake was inhibited, whereas the cell density increased by approximately 50%, resulting in similar volumetric glucose consumption to that of the parental strain. The metabolic profiles revealed accumulation of pyruvate, acetyl-CoA, and the TCA cycle intermediates in the alsSD mutant. Our results indicate that alsSD-deleted B. subtilis has potential as an effective host for stationary-phase production of compounds synthesized from these intermediates.
Assuntos
Acetoína/metabolismo , Bacillus subtilis/metabolismo , Biotecnologia , Ácidos Picolínicos/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Técnicas de Cultura , Glucose/metabolismo , Espaço Intracelular/metabolismoRESUMO
The ResD response regulator activates transcription of diverse genes in Bacillus subtilis in response to oxygen limitation. ResD regulon genes that are the most highly induced during nitrate respiration include the nitrite reductase operon (nasDEF) and the flavohemoglobin gene (hmp), whose products function in nitric oxide (NO) metabolism. Transcription of these genes is also under the negative control of the NO-sensitive NsrR repressor. Recent studies showed that the NsrR regulon contains genes with no apparent relevance to NO metabolism and that the ResD response regulator and NsrR coordinately regulate transcription. To determine whether these genes are direct targets of NsrR and ResD, we used chromatin affinity precipitation coupled with tiling chip (ChAP-chip) and ChAP followed by quantitative PCR (ChAP-qPCR) analyses. The study showed that ResD and NsrR directly control transcription of the ykuNOP operon in the Fur regulon. ResD functions as an activator at the nasD and hmp promoters, whereas it functions at the ykuN promoter as an antirepressor of Fur and a corepressor for NsrR. This mechanism likely participates in fine-tuning of transcript levels in response to different sources of stress, such as oxygen limitation, iron limitation, and exposure to NO.
Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Imunoprecipitação da Cromatina , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Bacterial chromosome replication is initiated by binding of DnaA to a DnaA-box cluster (DBC) within the replication origin (oriC). In Bacillus subtilis, six additional DBCs are found outside of oriC and some are known to be involved in transcriptional regulation of neighboring genes. A deletion mutant lacking the six DBCs (Δ6) initiated replication early. Further, inactivation of spo0J in Δ6 cells yielded a pleiotropic phenotype, accompanied by severe growth inhibition. However, a spontaneous suppressor in soj or a deletion of soj, which stimulates DnaA activity in the absence of Spo0J, counteracted these effects. Such abnormal phenotypic features were not observed in a mutant background in which replication initiation was driven by a plasmid-derived replication origin. Moreover, introduction of a single DBC at various ectopic positions within the Δ6 chromosome partly suppressed the early-initiation phenotype, but this was dependent on insertion location. We propose that DBCs negatively regulate replication initiation by interacting with DnaA molecules and play a major role, together with Spo0J/Soj, in regulating the activity of DnaA.
Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/fisiologia , Replicação do DNA , DNA Bacteriano/química , Proteínas de Ligação a DNA/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Sítios de Ligação , Cromossomos Bacterianos/química , Complexo de Reconhecimento de Origem , Fenótipo , Sequências Reguladoras de Ácido Nucleico , Deleção de SequênciaRESUMO
Biofilm is a complex aggregate of cells that adhere to each other and produce an extracellular matrix. In Bacillus subtilis, an extracellular polysaccharide (EPS) and amyloid fiber (TasA), synthesized by the epsA-epsO and tapA-sipW-tasA operons, respectively, are the primary components of the extracellular matrix. In the current study, we investigated the functional role of the previously uncharacterized veg gene in B. subtilis. Overproduction of Veg, a small protein highly conserved among Gram-positive bacteria, stimulated biofilm formation via inducing transcription of the tapA-sipW-tasA operon. Moreover, overproduced Veg restored the impairment of biofilm formation in mutants carrying a deletion of of sinI, slrA, or slrR, encoding an antirepressor of SinR that acts as the master regulator of biofilm formation, while biofilm morphology in the absence of SinR was not affected by either additional veg deletion or overproduction, indicating that Veg negatively regulates SinR activity independently of the known antirepressors. Expression of sinR was not affected in Veg-overproducing cells, and amounts of SinR were similar in cells expressing different levels of Veg, strongly suggesting that Veg modulates the repressor activity of SinR. Interestingly, the results of in vivo pulldown assays of the SinR complex indicate that Veg inhibits the interactions between SinR and SlrR. Based on these findings, we propose that Veg or a Veg-induced protein acts as an antirepressor of SinR to regulate biofilm formation.
Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/fisiologia , Animais , Anticorpos Antibacterianos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Retroalimentação Fisiológica , Mutação , Óperon , Coelhos , Esporos Bacterianos , Fatores de Tempo , Transcrição GênicaRESUMO
Coordination of chromosome segregation and cytokinesis is crucial for efficient cell proliferation. In Bacillus subtilis, the nucleoid occlusion protein Noc protects the chromosomes by associating with the chromosome and preventing cell division in its vicinity. Using protein localization, ChAP-on-Chip and bioinformatics, we have identified a consensus Noc-binding DNA sequence (NBS), and have shown that Noc is targeted to about 70 discrete regions scattered around the chromosome, though absent from a large region around the replication terminus. Purified Noc bound specifically to an NBS in vitro. NBSs inserted near the replication terminus bound Noc-YFP and caused a delay in cell division. An autonomous plasmid carrying an NBS array recruited Noc-YFP and conferred a severe Noc-dependent inhibition of cell division. This shows that Noc is a potent inhibitor of division, but that its activity is strictly localized by the interaction with NBS sites in vivo. We propose that Noc serves not only as a spatial regulator of cell division to protect the nucleoid, but also as a timing device with an important role in the coordination of chromosome segregation and cell division.
Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/análise , DNA/metabolismo , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Divisão Celular , Cromossomos Bacterianos/genética , DNA/genética , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Genômica , Plasmídeos/metabolismoRESUMO
BACKGROUND: The Bacillus subtilis genome-reduced strain MGB874 exhibits enhanced production of exogenous extracellular enzymes under batch fermentation conditions. We predicted that deletion of the gene for RocG, a bi-functional protein that acts as a glutamate dehydrogenase and an indirect repressor of glutamate synthesis, would improve glutamate metabolism, leading to further increased enzyme production. However, deletion of rocG dramatically decreased production of the alkaline cellulase Egl-237 in strain MGB874 (strain 874∆rocG). RESULTS: Transcriptome analysis and cultivation profiles suggest that this phenomenon is attributable to impaired secretion of alkaline cellulase Egl-237 and nitrogen starvation, caused by decreased external pH and ammonium depletion, respectively. With NH3-pH auxostat fermentation, production of alkaline cellulase Egl-237 in strain 874∆rocG was increased, exceeding that in the wild-type-background strain 168∆rocG. Notably, in strain 874∆rocG, high enzyme productivity was observed throughout cultivation, possibly due to enhancement of metabolic flux from 2-oxoglutarate to glutamate and generation of metabolic energy through activation of the tricarboxylic acid (TCA) cycle. The level of alkaline cellulase Egl-237 obtained corresponded to about 5.5 g l-1, the highest level reported so far. CONCLUSIONS: We found the highest levels of production of alkaline cellulase Egl-237 with the reduced-genome strain 874∆rocG and using the NH3-pH auxostat. Deletion of the glutamate dehydrogenase gene rocG enhanced enzyme production via a prolonged auxostat fermentation, possibly due to improved glutamate synthesis and enhanced generation of metabolism energy.
Assuntos
Bacillus subtilis/metabolismo , Celulases/metabolismo , Ácido Glutâmico/metabolismo , Amônia/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Celulases/genética , Ciclo do Ácido Cítrico , Regulação para Baixo , Perfilação da Expressão Gênica , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Concentração de Íons de Hidrogênio , Ácidos Cetoglutáricos/metabolismo , Deleção de SequênciaRESUMO
AbrB is a global transcriptional regulator of Bacillus subtilis that represses the expression of many genes during exponential growth. Here, we demonstrate that AbrB and its homolog Abh bind to hundreds of sites throughout the entire B. subtilis genome during exponential growth. Comparison of regional binding of AbrB and Abh in wild-type, ΔabrB and Δabh backgrounds revealed that they bind as homomer and/or heteromer forms with different specificities and affinities. We found four AbrB and Abh binding patterns were major. Three of these contain pairs of TGGNA motifs connected by A/T-rich sequences, differing in arrangement and spacing. We also assessed the direct involvement of these complexes in the control of gene expression. Our data indicate that AbrB usually acts as a repressor, and that the ability of Abh to act as a transcriptional regulator was limited. We found that changes to AbrB/Abh levels affect their binding at several promoters and consequently transcriptional regulation. Surprisingly, most AbrB/Abh binding events had no impact on transcription, suggesting an interesting possibility that AbrB/Abh binding is analogous to nucleoid-associated protein binding in Escherichia coli.
Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Transcrição Gênica , Bacillus subtilis/metabolismo , Sequência de Bases , Sítios de Ligação , Sequência Consenso , Dimerização , Genoma Bacteriano , Ligação ProteicaRESUMO
We identified the sequence-specific starting positions of consecutive miscalls in the mapping of reads obtained from the Illumina Genome Analyser (GA). Detailed analysis of the miscall pattern indicated that the underlying mechanism involves sequence-specific interference of the base elongation process during sequencing. The two major sequence patterns that trigger this sequence-specific error (SSE) are: (i) inverted repeats and (ii) GGC sequences. We speculate that these sequences favor dephasing by inhibiting single-base elongation, by: (i) folding single-stranded DNA and (ii) altering enzyme preference. This phenomenon is a major cause of sequence coverage variability and of the unfavorable bias observed for population-targeted methods such as RNA-seq and ChIP-seq. Moreover, SSE is a potential cause of false single-nucleotide polymorphism (SNP) calls and also significantly hinders de novo assembly. This article highlights the importance of recognizing SSE and its underlying mechanisms in the hope of enhancing the potential usefulness of the Illumina sequencers.
Assuntos
Análise de Sequência de DNA , Análise de Sequência de RNA , Bacillus subtilis/genética , Pareamento Incorreto de Bases , Mapeamento Cromossômico , Genoma Bacteriano , Sequências Repetidas InvertidasRESUMO
Copper is essential for life, but is toxic in excess. Copper homeostasis is achieved in the cytoplasm and the periplasm as a unique feature of Gram-negative bacteria. Especially, it has become clear the role of the periplasm and periplasmic proteins regarding whole-cell copper homeostasis. Here, we addressed the role of the periplasm and periplasmic proteins in copper homeostasis using a Systems Biology approach integrating experiments with models. Our analysis shows that most of the copper-bound molecules localize in the periplasm but not cytoplasm, suggesting that Escherichia coli utilizes the periplasm to sense the copper concentration in the medium and sequester copper ions. In particular, a periplasmic multi-copper oxidase CueO and copper-responsive transcriptional factor CusS contribute both to protection against Cu(I) toxicity and to incorporating copper into the periplasmic components/proteins. We propose that Gram-negative bacteria have evolved mechanisms to sense and store copper in the periplasm to expand their living niches.
Assuntos
Proteínas de Escherichia coli , Proteínas Periplásmicas , Proteínas de Escherichia coli/metabolismo , Periplasma/metabolismo , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , HomeostaseRESUMO
We report the complete and annotated genome sequence of Bacillus cereus NC7401, a representative of the strain group that causes emetic-type food poisoning. The emetic toxin, cereulide, is produced by a nonribosomal protein synthesis (NRPS) system that is encoded by a gene cluster on a large resident plasmid, pNCcld.
Assuntos
Bacillus cereus/genética , Bacillus cereus/metabolismo , Depsipeptídeos/biossíntese , Genoma Bacteriano , Bacillus cereus/patogenicidade , Sequência de Bases , Mapeamento Cromossômico , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Dados de Sequência Molecular , Plasmídeos/genética , Análise de Sequência de DNARESUMO
Eucommia ulmoides Oliver is one of a few woody plants capable of producing abundant quantities of trans-polyisoprene rubber in their leaves, barks, and seed coats. One cDNA library each was constructed from its outer stem tissue and inner stem tissue. They comprised a total of 27,752 expressed sequence tags (ESTs) representing 10,520 unigenes made up of 4,302 contigs and 6,218 singletons. Homologues of genes coding for rubber particle membrane proteins that participate in the synthesis of high-molecular poly-isoprene in latex were isolated, as well as those encoding known major latex proteins (MLPs). MLPs extensively shared ESTs, indicating their abundant expression during trans-polyisoprene rubber biosynthesis. The six mevalonate pathway genes which are implicated in the synthesis of isopentenyl diphosphate (IPP), a starting material of poly-isoprene biosynthesis, were isolated, and their role in IPP biosynthesis was confirmed by functional complementation of suitable yeast mutants. Genes encoding five full-length trans-isoprenyl diphosphate synthases were also isolated, and two among those synthesized farnesyl diphosphate from IPP and dimethylallyl diphosphate, an assumed intermediate of rubber biosynthesis. This study should provide a valuable resource for further studies of rubber synthesis in E. ulmoides.
Assuntos
Eucommiaceae/genética , Eucommiaceae/metabolismo , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genes de Plantas , Hemiterpenos/metabolismo , Látex/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Teste de Complementação Genética , Hemiterpenos/biossíntese , Hemiterpenos/genética , Dados de Sequência Molecular , Mutação , Compostos Organofosforados , Caules de Planta/genéticaRESUMO
BACKGROUND: Bacillus subtilis genome-reduced strain MGB874 exhibits enhanced production of exogenous extracellular alkaline cellulase Egl-237 and subtilisin-like alkaline protease M-protease. Here, we investigated the suitability of strain MGB874 for the production of α-amylase, which was anticipated to provoke secretion stress responses involving the CssRS (Control secretion stress Regulator and Sensor) system. RESULTS: Compared to wild-type strain 168, the production of a novel alkaline α-amylase, AmyK38, was severely decreased in strain MGB874 and higher secretion stress responses were also induced. Genetic analyses revealed that these phenomena were attributable to the decreased pH of growth medium as a result of the lowered expression of rocG, encoding glutamate dehydrogenase, whose activity leads to NH3 production. Notably, in both the genome-reduced and wild-type strains, an up-shift of the external pH by the addition of an alkaline solution improved AmyK38 production, which was associated with alleviation of the secretion stress response. These results suggest that the optimal external pH for the secretion of AmyK38 is higher than the typical external pH of growth medium used to culture B. subtilis. Under controlled pH conditions, the highest production level (1.08 g l(-1)) of AmyK38 was obtained using strain MGB874. CONCLUSIONS: We demonstrated for the first time that RocG is an important factor for secretory enzyme production in B. subtilis through its role in preventing acidification of the growth medium. As expected, a higher external pH enabled a more efficient secretion of the alkaline α-amylase AmyK38 in B. subtilis. Under controlled pH conditions, the reduced-genome strain MGB874 was demonstrated to be a beneficial host for the production of AmyK38.
Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Espaço Extracelular/metabolismo , alfa-Amilases/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Espaço Extracelular/química , Espaço Extracelular/genética , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , alfa-Amilases/genéticaRESUMO
We have reported the construction of 1 Mb reduced genome Escherichia coli MGF-01 by a 28-step operation. This time, transcriptome analysis of MGF-01 was performed. Although the transcriptome profiles of the exponential phase in parental strain W3110red were well-conserved in MGF-01, the rspAB operon was highly expressed. A LacZ reporter assay of a series of stepwise deletion strains prepared in the course of MGF-01 construction indicated that rspA was highly expressed after the 5th step. Further analysis indicated that Δ29, one of the deleted regions at the 5th step, relates to an increase in rspA expression, and that transcriptional regulator ydfH, in the Δ29 region, is responsible for the expression of rspA, gel shift assay indicated that YdfH bound directly to the upstream region of rspA. Based on these results, it was concluded that YdfH is a transcriptional repressor of the rspAB operon.