Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 579(7800): 598-602, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028527

RESUMO

The anti-cancer drug target poly(ADP-ribose) polymerase 1 (PARP1) and its close homologue, PARP2, are early responders to DNA damage in human cells1,2. After binding to genomic lesions, these enzymes use NAD+ to modify numerous proteins with mono- and poly(ADP-ribose) signals that are important for the subsequent decompaction of chromatin and the recruitment of repair factors3,4. These post-translational modifications are predominantly serine-linked and require the accessory factor HPF1, which is specific for the DNA damage response and switches the amino acid specificity of PARP1 and PARP2 from aspartate or glutamate to serine residues5-10. Here we report a co-structure of HPF1 bound to the catalytic domain of PARP2 that, in combination with NMR and biochemical data, reveals a composite active site formed by residues from HPF1 and PARP1 or PARP2 . The assembly of this catalytic centre is essential for the addition of ADP-ribose moieties after DNA damage in human cells. In response to DNA damage and occupancy of the NAD+-binding site, the interaction of HPF1 with PARP1 or PARP2 is enhanced by allosteric networks that operate within the PARP proteins, providing an additional level of regulation in the induction of the DNA damage response. As HPF1 forms a joint active site with PARP1 or PARP2, our data implicate HPF1 as an important determinant of the response to clinical PARP inhibitors.


Assuntos
ADP-Ribosilação , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Dano ao DNA , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biocatálise , Proteínas de Transporte/genética , Domínio Catalítico , Células HEK293 , Humanos , Modelos Moleculares , Mutação , NAD/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Anêmonas-do-Mar
2.
Nucleic Acids Res ; 49(4): 2266-2288, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33511412

RESUMO

PARP-1 is a key early responder to DNA damage in eukaryotic cells. An allosteric mechanism links initial sensing of DNA single-strand breaks by PARP-1's F1 and F2 domains via a process of further domain assembly to activation of the catalytic domain (CAT); synthesis and attachment of poly(ADP-ribose) (PAR) chains to protein sidechains then signals for assembly of DNA repair components. A key component in transmission of the allosteric signal is the HD subdomain of CAT, which alone bridges between the assembled DNA-binding domains and the active site in the ART subdomain of CAT. Here we present a study of isolated CAT domain from human PARP-1, using NMR-based dynamics experiments to analyse WT apo-protein as well as a set of inhibitor complexes (with veliparib, olaparib, talazoparib and EB-47) and point mutants (L713F, L765A and L765F), together with new crystal structures of the free CAT domain and inhibitor complexes. Variations in both dynamics and structures amongst these species point to a model for full-length PARP-1 activation where first DNA binding and then substrate interaction successively destabilise the folded structure of the HD subdomain to the point where its steric blockade of the active site is released and PAR synthesis can proceed.


Assuntos
Poli(ADP-Ribose) Polimerase-1/química , Regulação Alostérica , Amidas/química , Domínio Catalítico , Cristalografia por Raios X , Dano ao DNA , Ativação Enzimática , Modelos Moleculares , Mutação , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/química , Domínios Proteicos
3.
Sci Adv ; 3(9): e1602937, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28879231

RESUMO

Homeodomain proteins control the developmental transition between the haploid and diploid phases in several eukaryotic lineages, but it is not known whether this regulatory mechanism reflects the ancestral condition or, instead, convergent evolution. We have characterized the mating-type locus of the amoebozoan Dictyostelium discoideum, which encodes two pairs of small proteins that determine the three mating types of this species; none of these proteins display recognizable homology to known families. We report that the nuclear magnetic resonance structures of two of them, MatA and MatB, contain helix-turn-helix folds flanked by largely disordered amino- and carboxyl-terminal tails. This fold closely resembles that of homeodomain transcription factors, and, like those proteins, MatA and MatB each bind DNA characteristically using the third helix of their folded domains. By constructing chimeric versions containing parts of MatA and MatB, we demonstrate that the carboxyl-terminal tail, not the central DNA binding motif, confers mating specificity, providing mechanistic insight into how a third mating type might have originated. Finally, we show that these homeodomain-like proteins specify zygote function: Hemizygous diploids, formed in crosses between a wild-type strain and a mat null mutant, grow and differentiate identically to haploids. We propose that Dictyostelium MatA and MatB are divergent homeodomain proteins with a conserved function in triggering the haploid-to-diploid transition that can be traced back to the last common ancestor of eukaryotes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Dictyostelium/fisiologia , Diploide , Haploidia , Proteínas de Homeodomínio/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Proteínas de Ligação a DNA/química , Proteínas de Homeodomínio/química , Estágios do Ciclo de Vida , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA