Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(36): e2401270, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38716737

RESUMO

The potential to produce nanostructures with intricate shapes in large quantities holds promise for a range of applications in the fields of nanoelectronics and biomedicine. Here a method for fabricating jellyfish-like Ni nanowires (JFNWs) using bilayered nanoporous anodic alumina templates with through pores of varying diameters in each layer is presented. To assess the capabilities of this method, samples are created with different voltages during the second step of anodization, resulting in distinct geometrical characteristics of the second layer of the template, and subsequently synthesize Ni JFNWs. By employing magnetometry and first-order reversal curve (FORC) method, the magnetic properties are examined and a significant alteration in their magnetic behavior, attributed to the differing shapes of the JFNWs and the magnetostatic interactions within the array, is observed. The study utilizes magnetic force microscopy to evaluate the stray magnetic fields generated by the individual JFNWs and unveils their unusual and asymmetric distribution. Through simulations based on the experimental data, the study analyzes the field- and current-induced domain wall movement in a single JFNW and their array. The findings reveal non-trivial micromagnetic configurations in these structures, including a remarkable 'corkscrew' state, and allow for an examination of the process of magnetization switching.

2.
Nano Lett ; 22(17): 6857-6865, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35849087

RESUMO

Perpendicularly magnetized structures that are switchable using a spin current under field-free conditions can potentially be applied in spin-orbit torque magnetic random-access memory (SOT-MRAM). Several structures have been developed; however, new structures with a simple stack structure and MRAM compatibility are urgently needed. Herein, a typical structure in a perpendicular spin-transfer torque MRAM, the Pt/Co multilayer and its synthetic antiferromagnetic counterpart with perpendicular magnetic anisotropy, was observed to possess an intrinsic interlayer chiral interaction between neighboring magnetic layers, namely, the interlayer Dzyaloshinskii-Moriya interaction (DMI) effect. Furthermore, using a current parallel to the eigenvector of the interlayer DMI, we switched the perpendicular magnetization of both structures without a magnetic field, owing to the additional symmetry breaking introduced by the interlayer DMI. This SOT switching scheme realized in the Pt/Co multilayer and its synthetic antiferromagnet structure may open a new avenue toward practical perpendicular SOT-MRAM and other SOT devices.

3.
Small ; 18(47): e2203555, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192153

RESUMO

Metallic barcode nanowires (BNWs) composed of repeating heterogeneous segments fabricated by template-assisted electrodeposition can offer extended functionality in magnetic, electrical, mechanical, and biomedical applications. The authors consider such nanostructures as a 3D system of magnetically interacting elements with magnetic behavior strongly affected by complex magnetostatic interactions. This study discusses the influence of geometrical parameters of segments on the character of their interactions and the overall magnetic behavior of the array of BNWs having alternating magnetization, because the Fe and Au segments are made of Fe-Au alloys with high and low magnetizations. By controlling the applied current densities and the elapsed time in the electrodeposition, the dimension of the Fe-Au BNWs can be regulated. This study reveals that the influence of the length of magnetically weak Au segments on the interaction field between nanowires is different for samples with magnetically strong 100 and 200 nm long Fe segments using the first-order reversal curve (FORC) diagram method. With the help of micromagnetic simulations, three types of magnetostatic interactions in the BNW arrays are discovered and analy. This study demonstrates that the dominating type of interaction depends on the geometric parameters of the Fe and Au segments and the interwire and intrawire distances.


Assuntos
Nanoestruturas , Nanofios , Nanofios/química , Nanoestruturas/química , Galvanoplastia/métodos , Magnetismo
4.
Phys Chem Chem Phys ; 24(14): 8225-8232, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35319030

RESUMO

Understanding the nature of recently discovered spin-orbital induced phenomena and a definition of a general approach for "ferromagnet/heavy-metal" layered systems to enhance and manipulate spin-orbit coupling, spin-orbit torque, and the Dzyaloshinskii-Moriya interaction (DMI) assisted by atomic-scale interface engineering are essential for developing spintronics and spin-orbitronics. Here, we exploit X-ray magnetic circular dichroism (XMCD) spectroscopy at the L2,3-edges of 5d and 4d non-magnetic heavy metals (W and Ru, respectively) in ultrathin Ru/Co/W/Ru films to determine their induced magnetic moments due to the proximity to the ferromagnetic layer of Co. The deduced orbital and spin magnetic moments agree well with the theoretically predicted values, highlighting the drastic effect of constituting layers on the system's magnetic properties and the strong interfacial DMI in Ru/Co/W/Ru films. As a result, we demonstrate the ability to simultaneously control the strength of magnetic anisotropy and intermixing-enhanced DMI through the interface engineered inversion asymmetry in thin-film chiral ferromagnets, which are a potential host for stable magnetic skyrmions.

5.
RSC Adv ; 13(36): 25140-25158, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37622013

RESUMO

Magnetic nanoparticles with capacity for surface functionalisation have potential applications in water purification and biomedicine. Here, a simple co-precipitation technique was used to synthesize mesoporous ferrite nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) micellular surfactant. The as-synthesized ferrite nanoparticles were calcined at 250 °C for 5, 10, 15, and 24 h to remove the surfactant and create a mesoporous structure. The prepared samples were characterised using a wide range of analytical techniques. Microscopical images showed that all uncalcined particles have cauliflower shape without porosity. However, after calcination, surface and deep pores were created on the synthesized nanoparticles. In addition, transmission electron microscope (TEM) images of calcined nanoparticles revealed a wormhole-like structure, which is typical for the mesoporous architectures. Based on X-ray diffraction (XRD), the uncalcined and calcined samples exhibit pure Fe3O4 (magnetite) and γ-Fe2O3 (maghemite) ferrite phases, respectively. The γ-Fe2O3 nanoparticles demonstrated a high Brunauer-Emmett-Teller (BET) surface area with pore diameters smaller than 10 nm and a type IV isotherm similar to the mesopores. Hysteresis loops measured by vibrating sample magnetometry (VSM) showed the superparamagnetic nature for mesoporous γ-Fe2O3 nanoparticles. The first-order reversal curve (FORC) diagram revealed the formation of a mesoporous structure in calcined materials which reduces coercive distribution (Hc) and magnetostatic interaction (Hu) once compared to non-calcined samples. Mesoporous γ-Fe2O3 nanoparticles were successfully employed as an adsorbent for the removal of heavy metal ions of Pb(ii) from an aqueous solution. The highest lead ion adsorption was observed in mesoporous γ-Fe2O3 nanoparticles prepared with 3% CTAB.

6.
Materials (Basel) ; 16(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36770162

RESUMO

Neodymium-iron-boron magnetic oxide powders synthesized by sol-gel Pechini method were studied by using X-ray photoelectron spectroscopy (XPS) and quantum chemical modeling. The powder structure was examined by using X-ray diffraction (XRD) and modeled by using density functional theory (DFT) approximation. The electronic structures of the core and valent regions were determined experimentally by using X-ray photoelectron spectroscopy and modeled by using quantum chemical methods. This study provides important insights into the electronic structure and chemical bonding of atoms of NdFeCoB oxide particles with the partial substitution of Fe by Co atoms.

7.
ACS Appl Mater Interfaces ; 15(34): 40792-40798, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37595054

RESUMO

Nano- and microstructures based on ferrimagnets can demonstrate high efficiency and dynamics of current-induced magnetization switching combined with high stability of spin textures such as bubble domains and skyrmions, which are of practical importance for the development of spintronics and spin-orbitronics. This set of features is usually associated with magnetic momentum or angular momentum compensation states. Here, we experimentally show that the compensation state can be realized locally using nonuniform Joule heating. This effect is observed in the variable-width current guide made of the ferrimagnetic W/Co76Tb24/Ru thin films, where the position of a region heated to the compensation temperature depends linearly on the current pulse amplitude. This approach makes it possible to observe the simultaneous coexistence of Co-dominant and Tb-dominant regions, where current pulses induce spin-orbit torques in opposite directions, leading to local magnetization switching. It is found that the position of a Néel domain wall constraining the switched region lies in the vicinity of the coordinate corresponding to the compensation point but does not coincide with it due to high mobility under the action of spin current. Our findings open an alternative approach for engineering of ferrimagnetic nanodevices with advanced properties for future applications in spintronics, spin-orbitronics, and nanoelectronics.

8.
Nat Nanotechnol ; 17(8): 823-828, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35773423

RESUMO

The diode effect is fundamental to electronic devices and is widely used in rectifiers and a.c.-d.c. converters. At low temperatures, however, conventional semiconductor diodes possess a high resistivity, which yields energy loss and heating during operation. The superconducting diode effect (SDE)1-8, which relies on broken inversion symmetry in a superconductor, may mitigate this obstacle: in one direction, a zero-resistance supercurrent can flow through the diode, but for the opposite direction of current flow, the device enters the normal state with ohmic resistance. The application of a magnetic field can induce SDE in Nb/V/Ta superlattices with a polar structure1,2, in superconducting devices with asymmetric patterning of pinning centres9 or in superconductor/ferromagnet hybrid devices with induced vortices10,11. The need for an external magnetic field limits their practical application. Recently, a field-free SDE was observed in a NbSe2/Nb3Br8/NbSe2 junction; it originates from asymmetric Josephson tunnelling that is induced by the Nb3Br8 barrier and the associated NbSe2/Nb3Br8 interfaces12. Here, we present another implementation of zero-field SDE using noncentrosymmetric [Nb/V/Co/V/Ta]20 multilayers. The magnetic layers provide the necessary symmetry breaking, and we can tune the SDE by adjusting the structural parameters, such as the constituent elements, film thickness, stacking order and number of repetitions. We control the polarity of the SDE through the magnetization direction of the ferromagnetic layers. Artificially stacked structures13-18, such as the one used in this work, are of particular interest as they are compatible with microfabrication techniques and can be integrated with devices such as Josephson junctions19-22. Energy-loss-free SDEs as presented in this work may therefore enable novel non-volatile memories and logic circuits with ultralow power consumption.

9.
Materials (Basel) ; 15(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35161038

RESUMO

The paper describes the method for producing WC-10wt%Co hard alloy with 99.6% of the theoretical density and a Vickers hardness of ~1400 HV 0.5. Experimental data on densification dynamics, phase composition, morphology, mechanical properties, and grain size distribution of WC-10%wtCo using spark plasma sintering (SPS) within the range of 1000-1200 °C are presented. The high quality of the product is provided by the advanced method of high-speed powder mixture SPS-consolidation at achieving a high degree of densification with minimal calculated grain growth at 1200 °C.

10.
Materials (Basel) ; 14(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947121

RESUMO

The fabrication approach of a magnonic crystal with a step-like hysteresis behavior based on a uniform non-monotonous iron layer made by shadow deposition on a preconfigured substrate is reported. The origin of the step-like hysteresis loop behavior is studied with local and integral magnetometry methods, including First-Order Reversal Curves (FORC) diagram analysis, accompanied with magnetic microstructure dynamics measurements. The results are validated with macroscopic magnetic properties and micromagnetic simulations using the intrinsic switching field distribution model. The proposed fabrication method can be used to produce magnonic structures with the controllable hysteresis plateau region's field position and width that can be used to control the magnonic crystal's band structure by changing of an external magnetic field.

11.
ACS Appl Mater Interfaces ; 13(35): 42258-42265, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34427434

RESUMO

An experimental study of the phenomenon of electric current influence on the value and orientation of the exchange bias field (HEB) in the Pt/Co/NiO structure is carried out. Depending on the direction of the magnetization in a ferromagnet (FM) layer and the current pulse amplitude, the value of the HEB field can be changed repeatedly in the range of ±7.5 mT. A few experiments are performed to separate the contributions from two current-induced effects: (i) an injection of the spin current into an antiferromagnet layer (AFM) and (ii) Joule heating. As a result, we conclude that the modification in the HEB field during current pulse transmission in the Pt/Co/NiO structure is due to heating and the low value of Néel temperature (TN = 162 °C). This fact explains the absence of the exchange bias effect on the spin-orbit torque (SOT)-assisted magnetization switching. The most striking observation to emerge from the experimental data analysis is that depending on the initial spin configuration of the domain structure in the FM layer and the current pulse amplitude, the exchange bias can be changed locally. This opens up prospects for creating exchange-coupled FM/AFM structures with dynamically tuned parameters of the exchange bias, which can be used for the development of magnetic memory, neuromorphic, and logic devices based on magnetic nanosystems.

12.
Sci Rep ; 8(1): 16966, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446670

RESUMO

The lateral motion of a magnetic skyrmion, arising because of the skyrmion Hall effect, imposes a number of restrictions on the use of this spin state in the racetrack memory. A skyrmionium is a more promising spin texture for memory applications, since it has zero total topological charge and propagates strictly along a nanotrack. Here, the stability of the skyrmionium, as well as the dependence of its size on the magnetic parameters, such as the Dzyaloshinskii-Moriya interaction and perpendicular magnetic anisotropy, are studied by means of micromagnetic simulations. We propose an advanced method for the skyrmionium nucleation due to a local enhancement of the spin Hall effect. The stability of the skyrmionium being in motion under the action of the spin polarized current is analyzed.

13.
Nanoscale ; 10(43): 20405-20413, 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30376025

RESUMO

Helicity, a natural property of macro-, micro-, and nano-objects, potentially offers a new dimension to mechanical and electromagnetic applications for creating emerging nanodevices, such as nanorobots, nanomagnets, nanosensors, and high-density magnetic memory. Helical magnetic nanosprings are unique objects with remarkable magnetic properties, including the absence of stray fields in remanence owing to the chiral geometry, which makes them promising for data storage devices, nanoelectromechanical systems, and biomedical usage. Here, we investigated Co and CoFe nanospring arrays electrodeposited in highly ordered nanoporous templates. We report helical-shape-driven magnetization reversal of the nanosprings in comparison with the behavior of dipolarly coupled nanowires. We reveal two magnetization reversal modes depending on the orientation of the external magnetic field: coherent rotation of magnetization in the longitudinal geometry and three-dimensional vortex domain wall motion in the transverse geometry. The experimental findings are supported by analytical calculations and micromagnetic simulations that help to explain the field-dependent spin configurations observed by magnetic force microscopy.

14.
Beilstein J Nanotechnol ; 6: 697-703, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821709

RESUMO

Magnetic nanostructures in the form of a sandwich consisting of two permalloy (Py) disks with diameters of 600 and 200 nm separated by a nonmagnetic interlayer are studied. Magnetization reversal of the disk-on-disk nanostructures depends on the distance between centers of the small and big disks and on orientation of an external magnetic field applied during measurements. It is found that manipulation of the magnetic vortex chirality and the trajectory of the vortex core in the big disk is only possible in asymmetric nanostructures. Experimentally studied peculiarities of a motion path of the vortex core and vortex parameters by the magneto-optical Kerr effect (MOKE) magnetometer are supported by the magnetic force microscopy imaging and micromagnetic simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA